Skip to main content

Behavior in a Drosophila Model of Fragile X

  • Chapter
  • First Online:
Modeling Fragile X Syndrome

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 54))

Abstract

This chapter will briefly tie together a captivating string of scientific discoveries that began in the 1800s and catapulted us into the current state of the field where trials are under way in humans that have arisen directly from the discoveries made in model organisms such as Drosophila (fruit flies) and mice. The hope is that research efforts in the field of fragile X currently represent a roadmap that demonstrates the utility of identifying a mutant gene responsible for human disease, tracking down the molecular underpinnings of pathogenic phenotypes, and utilizing model organisms to identify and validate potential pharmacologic targets for testing in afflicted humans. Indeed, in fragile X this roadmap has already yielded successful trials in humans (J. Med. Genetic 46(4) 266–271; Jacquemont et al. Sci Transl Med 3(64):64ra61), although the work in studying these interventions in humans is just getting underway as the work in model organisms continues to generate new potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya JK, Labarca P, Delgado R, Jalink K, Zuker CS (1998) Synaptic defects and compensatory regulation of inositol metabolism in inositol polyphosphate 1-phosphatase mutants. Neuron 20(6):1219–1229. doi:S0896-6273(00)80502-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ackerman SL, Siegel RW (1986) Chemically reinforced conditioned courtship in Drosophila: responses of wild-type and the dunce, amnesiac and don giovanni mutants. J Neurogenet 3(2):111–123

    Article  PubMed  CAS  Google Scholar 

  • Bailey CH, Kandel ER, Si K (2004) The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron 44(1):49–57. doi:10.1016/j.neuron.2004.09.017

    Article  PubMed  CAS  Google Scholar 

  • Banerjee P, Nayar S, Hebbar S, Fox CF, Jacobs MC, Park JH, Fernandes JJ, Dockendorff TC (2007) Substitution of critical isoleucines in the KH domains of Drosophila fragile X protein results in partial loss-of-function phenotypes. Genetics 175(3):1241–1250. doi:10.1534/genetics.106.068908

    Article  PubMed  CAS  Google Scholar 

  • Banerjee P, Schoenfeld BP, Bell AJ, Choi CH, Bradley MP, Hinchey P, Kollaros M, Park JH, McBride SM, Dockendorff TC (2010) Short- and long-term memory are modulated by multiple isoforms of the fragile X mental retardation protein. J Neurosci 30(19):6782–6792. doi:10.1523/JNEUROSCI.6369-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Baraban JM, Worley PF, Snyder SH (1989) Second messenger systems and psychoactive drug action: focus on the phosphoinositide system and lithium. Am J Psychiatry 146(10):1251–1260

    PubMed  CAS  Google Scholar 

  • Bargiello TA, Young MW (1984) Molecular genetics of a biological clock in Drosophila. Proc Natl Acad Sci USA 81(7):2142–2146

    Article  PubMed  CAS  Google Scholar 

  • Barth M, Heisenberg M (1997) Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learn Mem 4(2):219–229

    Article  PubMed  CAS  Google Scholar 

  • Bastock MA (1955) The courtship of Drosophila melanogaster. Behaviour 8:86–111

    Article  Google Scholar 

  • Bastock MA (1956) A gene mutation which changes a behavior pattern. Evolution 10:421–439

    Article  Google Scholar 

  • Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377. doi:10.1016/j.tins.2004.04.009 S0166223604001328 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Bell AJ, McBride SM, Dockendorff TC (2009) Flies as the ointment: Drosophila modeling to enhance drug discovery. Fly (Austin) 3(1):39–49

    Article  CAS  Google Scholar 

  • Benzer S (1973) Genetic dissection of behavior. Sci Am 229(6):24–37

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361(6410):315–325. doi:10.1038/361315a0

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59(3):411–419. doi:0092-8674(89)90026-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Ciurlionis R (1998) Overexpression of fragile X gene (FMR-1) transcripts increases cAMP production in neural cells. J Neurosci Res 51(1):41–48. doi:10.1002/(SICI)1097-4547(19980101)51:1<41::AID-JNR4>3.0.CO;2-L [pii]

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Huttenlocher PR (1992) Cyclic AMP metabolism in fragile X syndrome. Ann Neurol 31(1):22–26. doi:10.1002/ana.410310105

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Hicar M, Ciurlionis R (1995) Reduced cyclic AMP production in fragile X syndrome: cytogenetic and molecular correlations. Pediatr Res 38(5):638–643

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Sumis A, Hervey C, Nelson M, Porges SW, Weng N, Weiler IJ, Greenough WT (2008) Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J Dev Behav Pediatr 29(4):293–302. doi:10.1097/DBP.0b013e31817dc447 00004703-200808000-00007 [pii]

    Article  PubMed  Google Scholar 

  • Berry-Kravis E, Hessl D, Coffey S, Hervey C, Schneider A, Yuhas J, Hutchison J, Snape M, Tranfaglia M, Nguyen DV, Hagerman R (2009) A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J Med Genet 46(4):266–271. doi:10.1136/jmg.2008.063701

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol 232(2):357–374

    PubMed  CAS  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    PubMed  CAS  Google Scholar 

  • Bogdanik L, Mohrmann R, Ramaekers A, Bockaert J, Grau Y, Broadie K, Parmentier ML (2004) The Drosophila metabotropic glutamate receptor DmGluRA regulates activity-dependent synaptic facilitation and fine synaptic morphology. J Neurosci 24(41):9105–9116. doi:24/41/9105 [pii] 10.1523/JNEUROSCI.2724-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Bolduc FV, Bell K, Cox H, Broadie KS, Tully T (2008) Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat Neurosci 11(10):1143–1145. doi:nn.2175 [pii] 10.1038/nn.2175

    Article  PubMed  CAS  Google Scholar 

  • Bolduc FV, Valente D, Nguyen AT, Mitra PP, Tully T (2010) An assay for social interaction in Drosophila fragile X mutants. Fly (Austin) 4(3):216–225

    Google Scholar 

  • Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S (2003) MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci 358(1432):805–814. doi:10.1098/rstb.2002.1224

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    PubMed  CAS  Google Scholar 

  • Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD, Darnell RB, Warren ST (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107(4):477–487

    Article  PubMed  CAS  Google Scholar 

  • Bullock BP, Habener JF (1998) Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge. Biochemistry 37(11):3795–3809. doi:10.1021/bi970982t

    Article  PubMed  CAS  Google Scholar 

  • Burnet B, Connolly K (1973) The visual component in the courtship of Drosophila melanogaster. Experientia 29(4):488–489

    Article  PubMed  CAS  Google Scholar 

  • Bushey D, Tononi G, Cirelli C (2009) The Drosophila fragile X mental retardation gene regulates sleep need. J Neurosci 29(7):1948–1961. doi:10.1523/JNEUROSCI.4830-08.2009

    Article  PubMed  CAS  Google Scholar 

  • Cajal R (1894) The croonian lecture: la fine structure des centres nerveux. Proc R Soc Lond 5:444–468

    Google Scholar 

  • Celniker SE, Rubin GM (2003) The Drosophila melanogaster genome. Annu Rev Genomics Hum Genet 4:89–117. doi:10.1146/annurev.genom.4.070802.110323

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P, Warren ST (2008) Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 4(4):256–263. doi:nchembio.78 [pii] 10.1038/nchembio.78

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Muzzio IA, Malleret G, Bartsch D, Verbitsky M, Pavlidis P, Yonan AL, Vronskaya S, Grody MB, Cepeda I, Gilliam TC, Kandel ER (2003) Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39(4):655–669. doi:S0896627303005014 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Choi CH, McBride SM, Schoenfeld BP, Liebelt DA, Ferreiro D, Ferrick NJ, Hinchey P, Kollaros M, Rudominer RL, Terlizzi AM, Koenigsberg E, Wang Y, Sumida A, Nguyen HT, Bell AJ, McDonald TV, Jongens TA (2010) Age-dependent cognitive impairment in a Drosophila fragile X model and its pharmacological rescue. Biogerontology 11(3):347–362. doi:10.1007/s10522-009-9259-6

    Article  PubMed  Google Scholar 

  • Choi CH, Schoenfeld BP, Bell AJ, Hinchey P, Kollaros M, Gertner MJ, Woo NH, Tranfaglia MR, Bear MF, Zukin RS, McDonald TV, Jongens TA, McBride SM (2011) Pharmacological reversal of synaptic plasticity deficits in the mouse model of Fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain Res 1380:106–119. doi:10.1016/j.brainres.2010.11.032

    Article  PubMed  CAS  Google Scholar 

  • Cirelli C (2009) The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10(8):549–560. doi:10.1038/nrn2683

    Article  PubMed  CAS  Google Scholar 

  • Cobb M (1996) Genotypic and phenotypic characterization of the Drosophila melanogaster olfactory mutation Indifferent. Genetics 144(4):1577–1587

    PubMed  CAS  Google Scholar 

  • Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94(10):5401–5404

    Article  PubMed  CAS  Google Scholar 

  • Connolly KaC (1973) Rejection responses by female Drosophila melanogaster: their ontogeny, causality and effects upon the behaviour of the courting male. Behaviour 44(1/2):142–166

    Article  Google Scholar 

  • Crick F (1984) Memory and molecular turnover. Nature 312(5990):101

    Article  PubMed  CAS  Google Scholar 

  • Crocker A, Sehgal A (2010) Genetic analysis of sleep. Genes Dev 24(12):1220–1235. doi:10.1101/gad.1913110

    Article  PubMed  CAS  Google Scholar 

  • Dal Santo P, Logan MA, Chisholm AD, Jorgensen EM (1999) The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98(6):757–767

    Article  PubMed  CAS  Google Scholar 

  • Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001) Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107(4):489–499

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. J. Murray, London

    Google Scholar 

  • Dauwalder B, Davis RL (1995) Conditional rescue of the dunce learning/memory and female fertility defects with Drosophila or rat transgenes. J Neurosci 15(5 Pt 1):3490–3499

    PubMed  CAS  Google Scholar 

  • Davis RL (1993) Mushroom bodies and Drosophila learning. Neuron 11(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • de Belle JS, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263(5147):692–695

    Article  PubMed  Google Scholar 

  • Dickson BJ (2008) Wired for sex: the neurobiology of Drosophila mating decisions. Science 322(5903):904–909. doi:322/5903/904 [pii] 10.1126/science.1159276

    Article  PubMed  CAS  Google Scholar 

  • Dockendorff TC, Su HS, McBride SM, Yang Z, Choi CH, Siwicki KK, Sehgal A, Jongens TA (2002) Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34(6):973–984. doi:S0896627302007249 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56(6):955–962. doi:S0896-6273(07)00964-6 [pii] 10.1016/j.neuron.2007.12.001

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411(6836):476–480. doi:10.1038/35078077 35078077 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73(5):1684–1688

    Article  PubMed  CAS  Google Scholar 

  • DuJardin F (1850) Mémoire sur le système nerveux des insectes. Ann Sci Nat Zool 14:195–206

    Google Scholar 

  • Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14(8):843–848. doi:nm1788 [pii] 10.1038/nm1788

    Article  PubMed  CAS  Google Scholar 

  • Ejima A, Smith BP, Lucas C, Levine JD, Griffith LC (2005) Sequential learning of pheromonal cues modulates memory consolidation in trainer-specific associative courtship conditioning. Curr Biol 15(3):194–206. doi:S0960982205000709 [pii] 10.1016/j.cub.2005.01.035

    Article  PubMed  CAS  Google Scholar 

  • Ejima A, Smith BP, Lucas C, van der Goes van Naters W, Miller CJ, Carlson JR, Levine JD, Griffith LC (2007) Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol 17(7):599–605. doi:S0960-9822(07)00892-5 [pii] 10.1016/j.cub.2007.01.053

    Article  PubMed  CAS  Google Scholar 

  • Epler JL (1966) Ethyl methanesulfonate-induced lethals in Drosophila–frequency-dose relations and multiple mosaicism. Genetics 54(1):31–36

    PubMed  CAS  Google Scholar 

  • Erber J (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol Entomol 5:343–358

    Article  Google Scholar 

  • Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2(1):74–78. doi:10.1038/4576

    Article  PubMed  CAS  Google Scholar 

  • Frey S, Frey JU (2008) ‘Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog Brain Res 169:117–143. doi:10.1016/S0079-6123(07)00007-6

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Matsumoto M, Igarashi K, Kato H, Mikoshiba K (2000) Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. Learn Mem 7(5):312–320

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Mikoshiba K, Kuroda Y, Ahmed TM, Kato H (2003) Cooperativity between activation of metabotropic glutamate receptors and NMDA receptors in the induction of LTP in hippocampal CA1 neurons. Neurosci Res 46(4):509–521. doi:S0168010203001627 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Gailey DA, Jackson FR, Siegel RW (1984) Conditioning mutations in Drosophila melanogaster affect an experience-dependent behavioral modification in courting males. Genetics 106(4):613–623

    PubMed  CAS  Google Scholar 

  • Gatto CL, Broadie K (2008) Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 135(15):2637–2648. doi:10.1242/dev.022244

    Article  PubMed  CAS  Google Scholar 

  • Gernsbacher MA, Dissanayake C, Goldsmith HH, Mundy PC, Rogers SJ, Sigman M (2005) Autism and deficits in attachment behavior. Science 307(5713):1201–1203, author reply 1201–1203. doi:10.1126/science.307.5713.1201

    Article  PubMed  CAS  Google Scholar 

  • Gerstner JR, Yin JC (2010) Circadian rhythms and memory formation. Nat Rev Neurosci 11(8):577–588. doi:10.1038/nrn2881

    Article  PubMed  CAS  Google Scholar 

  • Greenspan RJ (1995) Flies, genes, learning, and memory. Neuron 15(4):747–750. doi:0896-6273(95)90165-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78(6):1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315(5815):1143–1147. doi:1138389 [pii] 10.1126/science.1138389

    Article  PubMed  CAS  Google Scholar 

  • Hagerman RJ, Hagerman PJ (2002) Fragile X Syndrome: diagnosis, treatment, and research, 3rd edn. John Hopkins University Press, Baltimore, MA

    Google Scholar 

  • Hagerman RJ, Schreiner RA, Kemper MB, Wittenberger MD, Zahn B, Habicht K (1989) Longitudinal IQ changes in fragile X males. Am J Med Genet 33(4):513–518. doi:10.1002/ajmg.1320330422

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (1994) The mating of a fly. Science 264(5166):1702–1714

    Article  PubMed  CAS  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255(22):10896–10901

    PubMed  CAS  Google Scholar 

  • Hamada T, Liou SY, Fukushima T, Maruyama T, Watanabe S, Mikoshiba K, Ishida N (1999) The role of inositol trisphosphate-induced Ca2+ release from IP3-receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. Neurosci Lett 263(2–3):125–128

    Article  PubMed  CAS  Google Scholar 

  • Hatton DD, Sideris J, Skinner M, Mankowski J, Bailey DB Jr, Roberts J, Mirrett P (2006) Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Genet A 140A(17):1804–1813. doi:10.1002/ajmg.a.31286

    Article  PubMed  Google Scholar 

  • Hawkins RD, Kandel ER, Siegelbaum SA (1993) Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annu Rev Neurosci 16:625–665. doi:10.1146/annurev.ne.16.030193.003205

    Article  PubMed  CAS  Google Scholar 

  • Hay DA (1994) Does IQ decline with age in fragile-X? A methodological critique. Am J Med Genet 51(4):358–363. doi:10.1002/ajmg.1320510412

    Article  PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New York, A Wiley book in clinical psychology

    Google Scholar 

  • Heisenberg M (1980) Mutants of brain structure and function: what is the significance of the mushroom bodies for behavior? Basic Life Sci 16:373–390

    PubMed  CAS  Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2(1):1–30

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M, Heusipp M, Wanke C (1995) Structural plasticity in the Drosophila brain. J Neurosci 15(3 Pt 1):1951–1960

    PubMed  CAS  Google Scholar 

  • Helfrich-Forster C (1997) Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J Comp Neurol 380(3):335–354

    Article  PubMed  CAS  Google Scholar 

  • Helfrich-Forster C, Homberg U (1993) Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. J Comp Neurol 337(2):177–190. doi:10.1002/cne.903370202

    Article  PubMed  CAS  Google Scholar 

  • Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 99(11):7746–7750. doi:10.1073/pnas.122205699

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18(14):5366–5373

    PubMed  CAS  Google Scholar 

  • Inoue S, Shimoda M, Nishinokubi I, Siomi MC, Okamura M, Nakamura A, Kobayashi S, Ishida N, Siomi H (2002) A role for the Drosophila fragile X-related gene in circadian output. Curr Biol 12(15):1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 149(1):134–148

    Article  PubMed  CAS  Google Scholar 

  • Jackson FR, Newby LM (1993) Products of the Drosophila miniature-dusky gene complex function in circadian rhythmicity and wing development. Comp Biochem Physiol Comp Physiol 104(4):749–756

    Article  PubMed  CAS  Google Scholar 

  • Jacquemont S, Hagerman RJ, Hagerman PJ, Leehey MA (2007) Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: two faces of FMR1. Lancet Neurol 6(1):45–55. doi:S1474-4422(06)70676-7 [pii] 10.1016/S1474-4422(06)70676-7

    Article  PubMed  CAS  Google Scholar 

  • Jacquemont S, Curie A, des Portes V, Torrioli MG, Berry-Kravis E, Hagerman RJ, Ramos FJ, Cornish K, He Y, Paulding C, Neri G, Chen F, Hadjikhani N, Martinet D, Meyer J, Beckmann JS, Delange K, Brun A, Bussy G, Gasparini F, Hilse T, Floesser A, Branson J, Bilbe G, Johns D, Gomez-Mancilla B (2011) Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med 3(64):64ra61. doi:10.1126/scitranslmed.3001708

    Article  CAS  Google Scholar 

  • Jellies JA (1981) Associative olfactory conditioning in Drosophila melanogaster and memory retention through metamorphosis. Illinois State University, Normal, IL

    Google Scholar 

  • Jenkins JB (1967a) The induction of mosaic and complete dumpy mutants in Drosophila melanogaster with ethyl methanesulfonate. Mutat Res 4(1):90–92

    Article  PubMed  CAS  Google Scholar 

  • Jenkins JB (1967b) Mutagenesis at a complex locus in Drosophila with the monofunctional alkylating agent, ethyl methanesulfonate. Genetics 57(4):783–793

    PubMed  CAS  Google Scholar 

  • Jenkins JB (1972) Spontaneous mutation rate in the dumpy region of Drosophila. Genetics 72(2):373–375

    PubMed  CAS  Google Scholar 

  • Johnson GE (1897) Contribution to the psychology and pedagogy of feeble-minded children. J Psycho-asthenics 2:26–32

    Google Scholar 

  • Joiner Ml A, Griffith LC (1997) CaM kinase II and visual input modulate memory formation in the neuronal circuit controlling courtship conditioning. J Neurosci 17(23):9384–9391

    PubMed  Google Scholar 

  • Joiner WJ, Crocker A, White BH, Sehgal A (2006) Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441(7094):757–760. doi:10.1038/nature04811

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294(5544):1030–1038. doi:10.1126/science.1067020 294/5544/1030 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kane NS, Robichon A, Dickinson JA, Greenspan RJ (1997) Learning without performance in PKC-deficient Drosophila. Neuron 18(2):307–314. doi:S0896-6273(00)80270-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kenyon FC (1896) The brain of the bee – a preliminary contribution to the morphology of the nervous system of the Arthropoda. J Comp Neurol 6:134–210

    Article  Google Scholar 

  • Khodakhah K, Armstrong CM (1997) Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. Proc Natl Acad Sci USA 94(25):14009–14014

    Article  PubMed  CAS  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93(16):8455–8459

    Article  PubMed  CAS  Google Scholar 

  • Konorski J (1948) Conditioned reflexes and neuron organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Lakin-Thomas PL (1993) Effects of inositol starvation on the levels of inositol phosphates and inositol lipids in Neurospora crassa. Biochem J 292(Pt 3):805–811

    PubMed  CAS  Google Scholar 

  • Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15(21):1961–1967. doi:S0960-9822(05)01113-9 [pii] 10.1016/j.cub.2005.09.043

    Article  PubMed  CAS  Google Scholar 

  • Mai L, Jope RS, Li X (2002) BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J Neurochem 82(1):75–83

    Article  PubMed  CAS  Google Scholar 

  • Mak DO, McBride S, Foskett JK (1998) Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci USA 95(26):15821–15825

    Article  PubMed  CAS  Google Scholar 

  • Malherbe P, Kratochwil N, Zenner MT, Piussi J, Diener C, Kratzeisen C, Fischer C, Porter RH (2003) Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol 64(4):823–832. doi:10.1124/mol.64.4.823 64/4/823 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Manahan-Vaughan D, Braunewell KH (1999) Novelty acquisition is associated with induction of hippocampal long-term depression. Proc Natl Acad Sci USA 96(15):8739–8744

    Article  PubMed  CAS  Google Scholar 

  • Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15(17):R700–713. doi:S0960-9822(05)00944-9 [pii] 10.1016/j.cub.2005.08.024

    Article  PubMed  CAS  Google Scholar 

  • Martin KC, Kosik KS (2002) Synaptic tagging – who’s it? Nat Rev Neurosci 3(10):813–820. doi:10.1038/nrn942

    Article  PubMed  CAS  Google Scholar 

  • McBride SMJ (1995) Learning, memory and sexual orientation in Drosophila melanogaster. Undergraduate Biology, Swarthmore College

    Google Scholar 

  • McBride SM, Giuliani G, Choi C, Krause P, Correale D, Watson K, Baker G, Siwicki KK (1999) Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24(4):967–977. doi:S0896-6273(00)81043-0 [pii]

    Article  PubMed  CAS  Google Scholar 

  • McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, Sehgal A, Siwicki KK, Dockendorff TC, Nguyen HT, McDonald TV, Jongens TA (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45(5):753–764. doi:S0896-6273(05)00076-0 [pii] 10.1016/j.neuron.2005.01.038

    Article  PubMed  CAS  Google Scholar 

  • McBride SM, Choi CH, Schoenfeld BP, Bell AJ, Liebelt DA, Ferreiro D, Choi RJ, Hinchey P, Kollaros M, Terlizzi AM, Ferrick NJ, Koenigsberg E, Rudominer RL, Sumida A, Chiorean S, Siwicki KK, Nguyen HT, Fortini ME, McDonald TV, Jongens TA (2010) Pharmacological and genetic reversal of age-dependent cognitive deficits attributable to decreased presenilin function. J Neurosci 30(28):9510–9522. doi:10.1523/JNEUROSCI.1017-10.2010

    PubMed  CAS  Google Scholar 

  • McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293(5533):1330–1333. doi:10.1126/science.1062622 1062622 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Mendel G (1866) Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865. Abhandlungen:3–47

    Google Scholar 

  • Miesenbock G (2009) The optogenetic catechism. Science 326(5951):395–399. doi:10.1126/science.1174520

    Article  PubMed  CAS  Google Scholar 

  • Min WW, Yuskaitis CJ, Yan Q, Sikorski C, Chen S, Jope RS, Bauchwitz RP (2009) Elevated glycogen synthase kinase-3 activity in Fragile X mice: key metabolic regulator with evidence for treatment potential. Neuropharmacology 56(2):463–472. doi:S0028-3908(08)00475-9 [pii] 10.1016/j.neuropharm.2008.09.017

    Article  PubMed  CAS  Google Scholar 

  • Moldin SO (2005) Understanding Fragile X syndrome: molecular, cellular and genomic neuroscience at the crossroads. Genes Brain Behav 4(6):337–340. doi:10.1111/j.1601-183X.2005.00150.x

    Article  PubMed  Google Scholar 

  • Moldin SO, Rubenstein JL, Hyman SE (2006) Can autism speak to neuroscience? J Neurosci 26(26):6893–6896. doi:10.1523/JNEUROSCI.1944-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Morales J, Hiesinger PR, Schroeder AJ, Kume K, Verstreken P, Jackson FR, Nelson DL, Hassan BA (2002) Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34(6):961–972. doi:S0896627302007316 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Morgan TH (1919) The physical basis of heredity. Monographs on experimental biology. J.B. Lippincott, Philadelphia, PA

    Book  Google Scholar 

  • Muqit MM, Feany MB (2002) Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci 3(3):237–243. doi:10.1038/nrn751

    Article  PubMed  CAS  Google Scholar 

  • Nagase T, Ito KI, Kato K, Kaneko K, Kohda K, Matsumoto M, Hoshino A, Inoue T, Fujii S, Kato H, Mikoshiba K (2003) Long-term potentiation and long-term depression in hippocampal CA1 neurons of mice lacking the IP(3) type 1 receptor. Neuroscience 117(4):821–830

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408(6812):584–588. doi:10.1038/35046067

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell WT, Warren ST (2002) A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 25:315–338. doi:10.1146/annurev.neuro.25.112701.142909 112701.142909 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Pagano A, Ruegg D, Litschig S, Stoehr N, Stierlin C, Heinrich M, Floersheim P, Prezeau L, Carroll F, Pin JP, Cambria A, Vranesic I, Flor PJ, Gasparini F, Kuhn R (2000) The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem 275(43):33750–33758. doi:10.1074/jbc.M006230200 M006230200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Broadie KS (2007) Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A convergently regulate the synaptic ratio of ionotropic glutamate receptor subclasses. J Neurosci 27(45):12378–12389. doi:27/45/12378 [pii] 10.1523/JNEUROSCI.2970-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Woodruff E 3rd, Liang P, Broadie K (2008) Mechanistic relationships between Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A signaling. Mol Cell Neurosci 37(4):747–760. doi:S1044-7431(08)00004-3 [pii] 10.1016/j.mcn.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  • Parmentier ML, Pin JP, Bockaert J, Grau Y (1996) Cloning and functional expression of a Drosophila metabotropic glutamate receptor expressed in the embryonic CNS. J Neurosci 16(21):6687–6694

    PubMed  CAS  Google Scholar 

  • Pascual A, Preat T (2001) Localization of long-term memory within the Drosophila mushroom body. Science 294(5544):1115–1117. doi:10.1126/science.1064200 294/5544/1115 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Power M (1943) The brain Drosophila melanogaster. J Morphol 72:517–559

    Article  Google Scholar 

  • Prokop A, Technau GM (1991) The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development 111(1):79–88

    PubMed  CAS  Google Scholar 

  • Purpura DP (1974) Dendritic spine "dysgenesis" and mental retardation. Science 186(4169):1126–1128

    Article  PubMed  CAS  Google Scholar 

  • Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 71(3):708–712

    Article  PubMed  CAS  Google Scholar 

  • Raymond FL, Tarpey P (2006) The genetics of mental retardation. Hum Mol Genet 15(Spec No 2):R110–R116. doi:15/suppl_2/R110 [pii] 10.1093/hmg/ddl189

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M (1984) Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38(3):701–710

    Article  PubMed  CAS  Google Scholar 

  • Reeve SP, Bassetto L, Genova GK, Kleyner Y, Leyssen M, Jackson FR, Hassan BA (2005) The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr Biol 15(12):1156–1163. doi:10.1016/j.cub.2005.05.050

    Article  PubMed  CAS  Google Scholar 

  • Restifo LL (2005) Mental retardation genes in drosophila: New approaches to understanding and treating developmental brain disorders. Ment Retard Dev Disabil Res Rev 11(4):286–294. doi:10.1002/mrdd.20083

    Article  PubMed  Google Scholar 

  • Roman G, Davis RL (2001) Molecular biology and anatomy of Drosophila olfactory associative learning. Bioessays 23(7):571–581. doi:10.1002/bies.1083 [pii] 10.1002/bies.1083

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Lewis EB (2000) A brief history of Drosophila’s contributions to genome research. Science 287(5461):2216–2218

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LS, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones SJ, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C, O’Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng XH, Lewis S (2000) Comparative genomics of the eukaryotes. Science 287(5461):2204–2215. doi:8396 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Sekine T, Yamaguchi T, Hamano K, Siomi H, Saez L, Ishida N, Shimoda M (2008) Circadian phenotypes of Drosophila fragile x mutants in alternative genetic backgrounds. Zoolog Sci 25(6):561–571. doi:10.2108/zsj.25.561

    Article  PubMed  CAS  Google Scholar 

  • Sherman RG, Atwood HL (1971) Synaptic facilitation: long-term neuromuscular facilitation in crustaceans. Science 171(977):1248–1250

    Article  PubMed  CAS  Google Scholar 

  • Si K, Giustetto M, Etkin A, Hsu R, Janisiewicz AM, Miniaci MC, Kim JH, Zhu H, Kandel ER (2003a) A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell 115(7):893–904

    Article  PubMed  CAS  Google Scholar 

  • Si K, Lindquist S, Kandel ER (2003b) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115(7):879–891

    Article  PubMed  CAS  Google Scholar 

  • Siegel RW, Hall JC (1979) Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc Natl Acad Sci USA 76(7):3430–3434

    Article  PubMed  CAS  Google Scholar 

  • Siwicki KK, Riccio P, Ladewski L, Marcillac F, Dartevelle L, Cross SA, Ferveur JF (2005) The role of cuticular pheromones in courtship conditioning of Drosophila males. Learn Mem 12(6):636–645. doi:lm.85605 [pii] 10.1101/lm.85605

    Article  PubMed  Google Scholar 

  • Skoulakis EM, Grammenoudi S (2006) Dunces and da Vincis: the genetics of learning and memory in Drosophila. Cell Mol Life Sci 63(9):975–988. doi:10.1007/s00018-006-6023-9

    Article  PubMed  CAS  Google Scholar 

  • Sofola O, Sundram V, Ng F, Kleyner Y, Morales J, Botas J, Jackson FR, Nelson DL (2008) The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior. J Neurosci 28(41):10200–10205. doi:10.1523/JNEUROSCI.2786-08.2008

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev Genet 2(11):879–890. doi:10.1038/35098592

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski MB (2010) Social interactions in "simple" model systems. Neuron 65(6):780–794. doi:10.1016/j.neuron.2010.03.007

    Article  PubMed  CAS  Google Scholar 

  • Spieth HT (1974) Courtship behavior in Drosophila. Annu Rev Entomol 19:385–405. doi:10.1146/annurev.en.19.010174.002125

    Article  PubMed  CAS  Google Scholar 

  • State MW (2010) The genetics of child psychiatric disorders: focus on autism and Tourette syndrome. Neuron 68(2):254–269. doi:10.1016/j.neuron.2010.10.004

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Kong A, Milde JJ, Gilbert C, Ramaiah L (1995) Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways. J Comp Neurol 361(2):298–320. doi:10.1002/cne.903610208

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant AH (1915) Experiments on sex recognition and the problem of sexual selection in drosophila. J Anim Behav 5:351–366

    Article  Google Scholar 

  • Takei K, Shin RM, Inoue T, Kato K, Mikoshiba K (1998) Regulation of nerve growth mediated by inositol 1,4,5-trisphosphate receptors in growth cones. Science 282(5394):1705–1708

    Article  PubMed  CAS  Google Scholar 

  • Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A (2002) A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta ) and mediates protein kinase A-dependent inhibition of GSK-3beta. J Biol Chem 277(40):36955–36961. doi:10.1074/jbc.M206210200 M206210200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Tompkins L (1984) Genetic analysis of sex appeal in Drosophila. Behav Genet 14(5):411–440

    Article  PubMed  CAS  Google Scholar 

  • Tompkins L, Gross AC, Hall JC, Gailey DA, Siegel RW (1982) The role of female movement in the sexual behavior of Drosophila melanogaster. Behav Genet 12(3):295–307

    Article  PubMed  CAS  Google Scholar 

  • Tompkins L, Siegel RW, Gailey DA, Hall JC (1983) Conditioned courtship in Drosophila and its mediation by association of chemical cues. Behav Genet 13(6):565–578

    Article  PubMed  CAS  Google Scholar 

  • Truman JW, Bate M (1988) Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 125(1):145–157

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157(2):263–277

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Boynton S, Brandes C, Dura JM, Mihalek R, Preat T, Villella A (1990) Genetic dissection of memory formation in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 55:203–211

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79(1):35–47. doi:0092-8674(94)90398-0 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Bourtchouladze R, Scott R, Tallman J (2003) Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2(4):267–277. doi:10.1038/nrd1061 nrd1061 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M (2002) Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci USA 99(20):13217–13221. doi:10.1073/pnas.172504199 172504199 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Volkmar FR, State M, Klin A (2009) Autism and autism spectrum disorders: diagnostic issues for the coming decade. J Child Psychol Psychiatry 50(1–2):108–115. doi:10.1111/j.1469-7610.2008.02010.x

    Article  PubMed  Google Scholar 

  • Walsh CA, Morrow EM, Rubenstein JL (2008) Autism and brain development. Cell 135(3):396–400. doi:S0092-8674(08)01306-8 [pii] 10.1016/j.cell.2008.10.015

    Article  PubMed  CAS  Google Scholar 

  • Wan L, Dockendorff TC, Jongens TA, Dreyfuss G (2000) Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol 20(22):8536–8547

    Article  PubMed  CAS  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097. doi:313/5790/1093 [pii] 10.1126/science.1128134

    Article  PubMed  CAS  Google Scholar 

  • Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417(6886):292–295. doi:10.1038/417292a 417292a [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wright-Talamante C, Cheema A, Riddle JE, Luckey DW, Taylor AK, Hagerman RJ (1996) A controlled study of longitudinal IQ changes in females and males with fragile X syndrome. Am J Med Genet 64(2):350–355. doi:10.1002/(SICI)1096-8628(19960809)64:2<350::AID-AJMG23>3.0.CO;2-D [pii] 10.1002/(SICI)1096-8628(19960809)64:2<350::AID-AJMG23>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Cao G, Pavlicek B, Luo X, Nitabach MN (2008) Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol 6(11):e273. doi:10.1371/journal.pbio.0060273

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Bogert BA, Li W, Su K, Lee A, Gao FB (2004) The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Curr Biol CB 14(12):1025–1034. doi:10.1016/j.cub.2004.05.055

    Article  CAS  Google Scholar 

  • Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP (2005) Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49(7):1053–1066. doi:S0028-3908(05)00217-0 [pii] 10.1016/j.neuropharm.2005.06.004

    Article  PubMed  CAS  Google Scholar 

  • Yandell M, Mungall CJ, Smith C, Prochnik S, Kaminker J, Hartzell G, Lewis S, Rubin GM (2006) Large-scale trends in the evolution of gene structures within 11 animal genomes. PLoS Comput Biol 2(3):e15. doi:10.1371/journal.pcbi.0020015

    Article  PubMed  CAS  Google Scholar 

  • Yang MY, Armstrong JD, Vilinsky I, Strausfeld NJ, Kaiser K (1995) Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron 15(1):45–54

    Article  PubMed  Google Scholar 

  • Yin JC, Wallach JS, Del Vecchio M, Wilder EL, Zhou H, Quinn WG, Tully T (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79(1):49–58. doi:0092-8674(94)90399-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Yin JC, Del Vecchio M, Zhou H, Tully T (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81(1):107–115. doi:0092-8674(95)90375-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Young MW (1996) The Drosophila genes timeless and period collaborate to promote cycles of gene expression composing a circadian pacemaker. Prog Brain Res 111:29–39

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron 42(3):437–449. doi:S089662730400217X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Yuskaitis CJ, Mines MA, King MK, Sweatt JD, Miller CA, Jope RS (2010) Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol 79(4):632–646. doi:S0006-2952(09)00802-8 [pii] 10.1016/j.bcp. 2009.09.023

    Article  PubMed  CAS  Google Scholar 

  • Zafeiriou DI, Ververi A, Vargiami E (2007) Childhood autism and associated comorbidities. Brain Dev 29(5):257–272. doi:10.1016/j.braindev.2006.09.003

    Article  PubMed  Google Scholar 

  • Zars T, Fischer M, Schulz R, Heisenberg M (2000) Localization of a short-term memory in Drosophila. Science 288(5466):672–675. doi:8462 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Zehring WA, Wheeler DA, Reddy P, Konopka RJ, Kyriacou CP, Rosbash M, Hall JC (1984) P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39(2 Pt 1):369–376

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD, Rubin GM, Broadie K (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107(5):591–603. doi:S0092-8674(01)00589-X [pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. McBride .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McBride, S.M., Bell, A.J., Jongens, T.A. (2012). Behavior in a Drosophila Model of Fragile X. In: Denman, R. (eds) Modeling Fragile X Syndrome. Results and Problems in Cell Differentiation, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21649-7_6

Download citation

Publish with us

Policies and ethics