Skip to main content

Results and Discussion

  • Chapter
  • First Online:
Lifetime Controlling Defects in Tool Steels

Part of the book series: Springer Theses ((Springer Theses))

  • 887 Accesses

Abstract

In the introduction, the potential effect of residual stresses (RS) on the fatigue behavior has been discussed extensively. In this work, systematic residual stress investigations were performed evaluating RS depth profiles, tangential and axial stresses, homogeneity around the specimen circumference, mechanical removal of highly stressed layers and relaxation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiebler H (ed) (1992) Gmelin handbook of inorganic chemistry. Practice of Steelmaking 4, vol 10, 8th edn. Springer, Berlin

    Google Scholar 

  2. Tokaji K, Ko H-N, Nakajima M, Itoga H (2003) Effects of humidity on crack initiation mechanism and associated S–N characteristics in very high strength steels. Mater Sci Eng A A345:197–206

    CAS  Google Scholar 

  3. Murakami Y, Yokoyama NN, Nagata J (2002) Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct 25:735–746

    Article  CAS  Google Scholar 

  4. Marsoner S, Ebner R, Liebfahrt W, Jeglitsch F (2002) Ermüdungsfestigkeit hochfester ledeburitischer PM-Werkzeugstähle. HTM 57:283–289

    CAS  Google Scholar 

  5. Marsoner S, Ebner R, Liebfahrt W (2003) Influence of inclusion content and residual stresses on SN curves of PM tool steels. BHM 148:176–181

    CAS  Google Scholar 

  6. Ritchie RO, Chang VA, Paton NE (1979) Influence of retained austenite on fatigue crack propagation in HP 9-4920 high strength alloy steel. Fatigue Fract Eng Mater Struct 1:107–121

    Article  CAS  Google Scholar 

  7. Kulmburg A (1998) The microstructure of tool steels—an overview for the practice. Part I: classification, systematics and heat treatment of tool steels. Prakt Metallogr Pr M 35:180–202

    CAS  Google Scholar 

  8. Osen IS (2004) Influence of the coarseness of carbides on mechanical properties of cold work tool steels. In: Proceedings of Euro PM 2004, vol 5, pp 387–392

    Google Scholar 

  9. Berns H, Trojahn W (1985) Einfluss der Wärmebehandlung auf das Ermüdungsverhalten ledeburitischer Kaltarbeitsstähle. VDI-Z 127:889–892

    CAS  Google Scholar 

  10. Berns H, Lueg J, Trojahn W, Wähling R, Wisell H (1987) The fatigue behavior of conventional and powder metallurgical high speed steels. Powder Metall Int 19:22–26

    CAS  Google Scholar 

  11. Fukaura K, Yokoyama Y, Yokoi D, Tsujii N, Ono K (2004) Fatigue of cold-work tool steels: effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations. Met Mat Trans A 35A:1289–1300

    Article  CAS  Google Scholar 

  12. Meurling F, Melander A, Tidesten M, Westin L (2001) Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels. Int J Fatigue 23:215–224

    Article  CAS  Google Scholar 

  13. Kral C, Lengauer W, Rafaja D, Ettmayer P (1998) Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides. J Alloys Compd 265:215–233

    Article  CAS  Google Scholar 

  14. Pernegger W (1968) Untersuchung von Me7C3 Karbiden und von daraus hergestellten Hartmetallen. Dissertation, Vienna University of Technology

    Google Scholar 

  15. Roberts G, Krauss G, Kennedy R (1998) Tool steels, 5th edn. ASM, Metals Park

    Google Scholar 

  16. Roberts GA, Hamaker JC Jr, Johnson AR (1962) Tool steels, 3rd edn. ASM, Metals Park

    Google Scholar 

  17. Kulmburg A, Svoboda K (1971) Untersuchungen über Karbidausscheidungen in maßänderungsarment, niedriglegierten Kaltarbeitsstählen. HTM 26:34–41

    CAS  Google Scholar 

  18. Averbach BL, Kulin SA, Cohen M (1949) The effect of plastic deformation on solid reactions, part II: the effect of applied stress on the martensite reactions. Cold working of metals. ASM, Metals Park

    Google Scholar 

  19. Wilker H (2004) Band 3: Weibull-Statistik in der Praxis. Leitfaden zur Zuverlässigkeits-ermittlung technischer Produkte, Lauffen am Neckar, Germany; Norderstedt

    Google Scholar 

  20. Masaki K, Ochi Y, Matsumura T (2004) Initiation and propagation behaviour of fatigue cracks in hard-shot peened Type 316L steel in high cycle fatigue. Fatigue Fract Eng Mater Struct 27:1137–1145

    Article  CAS  Google Scholar 

  21. Macherauch E, Hauk V (1983) Eigenspannungen: Entstehung-Messung-Bewertung. Bd.1, pp 42ff

    Google Scholar 

  22. Mughrabi H (2002) On multi-stage fatigue life diagrams and the relevant life-controlling mechanism in ultrahigh-cycle fatigue. Fatigue Fract Eng Mater Struct 25:755–764

    Article  Google Scholar 

  23. Borbély A, Mughrabi H, Eisenmeier G, Höppel HW (2002) A finite element modelling study of strain localization in the vicinity of near-surface cavities as a cause of subsurface fatigue crack initiation. Int J Fracture 115:227–232

    Article  Google Scholar 

  24. Naito T, Ueda H, Kikuchi M (1984) Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface. Met Trans A 15A:1431–1436

    Article  CAS  Google Scholar 

  25. Jesner G, Pippan R, Marsoner S, Haeussler K (2008) Fatigue behaviour of a high performance PM-tool steel for cold forging applications. In: Proceedings of EuroPM 2008, Mannheim, Germany

    Google Scholar 

  26. Furuya Y, Matsuoka S (2002) Improvement of gigacycle fatigue properties by modified ausforming in 1600 and 2000 MPa-class low-alloy steel. Metall Mater Trans A 33A:3421–3431

    Article  CAS  Google Scholar 

  27. Shiozawa K, Morii Y, Nishino S, Lu L (2006) Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Fatigue Fract Eng Mater Struct 28:1521–1532

    CAS  Google Scholar 

  28. Stickler R, Weiss B (1982) Review of the application of ultrasonic fatigue test methods for the determination of crack growth and threshold behavior of metallic materials. Ultrasonic fatigue. TMS-AIME, Warrendale, pp 135–171

    Google Scholar 

  29. Shiina T, Nakamura T, Noguchi T (2004) A fractographic comparison between fatigue crack propagation of surface-originating fractures in vacuum and interior-originating fractures on high strength steel. In: VHCF-3: Proceedings of the third international conference on very high cycle fatigue, pp 48–55

    Google Scholar 

  30. Isida M, Noguchi H (1984) Tension of a plate containing an embedded elliptical crack. Eng Fract Mech 20:387–408

    Article  Google Scholar 

  31. Nisitani H, Chen DH (1984) Trans Jpn Soc Mech Eng 50(453):1077–1082

    Google Scholar 

  32. Furuya Y, Matsuoka S (2004) Gigacycle fatigue properties of a modified-ausformed Si-Mn steel and effects of microstructure. Met Mat Trans A 35A:1715–1723

    Article  CAS  Google Scholar 

  33. Kulmburg A (1998) The microstructure of tool steels—an overview for the practice. Part 2: particular microstructural features of the individual groups of steels. Pract Metallogr 35:267–279

    CAS  Google Scholar 

  34. Kulmburg A, Korntheuer F (1976) Das Umwandlungsverhalten von Schnellarbeitsstählen bei kontinuierlicher Abkühlung. BHM 121:251–258

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rudolf Sohar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sohar, C.R. (2011). Results and Discussion. In: Lifetime Controlling Defects in Tool Steels. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21646-6_3

Download citation

Publish with us

Policies and ethics