Skip to main content
  • 1292 Accesses

Abstract

In this chapter selected NMR and MRI applications in the domain of chemical and process engineering are summarized. Subjects covered are listed in the following. Gas filtration: filter structure and particle deposition. Solid–liquid separation: surface filtration and centrifugation. Powder mixing: corrected variance of composition for stepwise mixing and as function of average composition. Rheometry: VPDF and viscosity function. Relaxometry for a flowing liquid: correction of signal decay due to flow in an inhomogeneous excitation and detection field. Trickle-bed reactor: structure and segmentation of the solid phase, distribution of liquid phase, differentiation of catalyst and support particles. Ceramic sponges: porosity and specific surface. Biofilm: modification of flow field due to biofilm growth. Microwave heating: NMR thermography and numerical analysis of artifacts. Emulsions: pulsed-gradient stimulated-echo pulse sequence (PGSTE) measurements with spectral resolution on simple and double emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The binomial distribution applies to the basic urn model where particles are returned after being drawn. Without replacement a hypergeometric distribution is obtained. If K is the total number of particles the variances differ by the factor \((K - M)/(K - 1)\) which is close to one for K ≫ M.

  2. 2.

    Concerning the significance of a voxel, see Sect. 2.1.3, p. 14ff.

  3. 3.

    As usual in standard low-field systems, the y axis is chosen vertically (the z axis is in direction of the polarizing field, i.e., horizontal). Accordingly the velocity component of interest is denoted by v in this section instead of w.

  4. 4.

    With http://integrals.wolfram.com.

  5. 5.

    E. H. Hardy, D. Mertens, K. H. Wassmer, N. Nestle, Low-field integrated rheo-TD-NMR on industrial media – experiences and challenges, poster presented on the ICMRM 10 in Montana.

  6. 6.

    In the first experiment no water load was present. Although only low power was applied for short time damaging of the birdcage resonator by local overheating was impressive. Fortunately care was taken to build a resonator especially for the tests.

  7. 7.

    For measurements on larger samples a third variable capacitor was added to the birdcage resonator. At high salt content matching to the system impedance is not possible with the standard capacitances.

  8. 8.

    CEM I 42,5 HS samples were kindly prepared and provided by Z. Djuric and M. Haist, KIT, CS, IMB.

  9. 9.

    Saturated at 150 bar after evacuation and stored in water for 20 days.

References

  1. Arola D, Barrall G, Powell R, McCarthy K, McCarthy M (1997) Use of nuclear magnetic resonance imaging as a viscometer for process monitoring. Chem Eng Sci 52(13):2049–2057

    Article  CAS  Google Scholar 

  2. Arola DF, Powell RL, Barrall GA, McCarthy MJ (1998) A simplified method for accuracy estimation of nuclear magnetic resonant imaging. Rev Sci Instrum 69(9):3300–3307

    Article  CAS  Google Scholar 

  3. Arola DF, Powell RL, Barrall GA, McCarthy MJ (1999) Pointwise observations for rheological characterization using nuclear magnetic resonance imaging. J Rheol 43(1):9–30

    Article  CAS  Google Scholar 

  4. Bardakci M, Tillich JE, Holz M (2006) Characterization of structure and transport in porous media by pulsed field gradient (PFG) NMR technique – Part I: Master curve and characteristic inner length. Chem Eng Technol 29(7):847–853. DOI 10.1002/ceat.200600043

    Article  CAS  Google Scholar 

  5. Beyea S, Balcom B, Bremner T, Armstrong R, Grattan-Bellew P (2003) Detection of drying-induced microcracking in cementitious materials with space-resolved H-1 nuclear magnetic resonance relaxometry. J Am Ceram Soc 86(5):800–805

    Article  CAS  Google Scholar 

  6. Beyea S, Balcom B, Bremner T, Prado P, Green D, Armstrong R, Grattan-Bellew P (1998) Magnetic resonance imaging and moisture content profiles of drying concrete. Cement Concrete Res 28(3):453–463

    Article  CAS  Google Scholar 

  7. Birkhofer BH, Jeelani SAK, Windhab EJ, Ouriev B, Lisner KJ, Braun P, Zeng Y (2008) Monitoring of fat crystallization process using UVP-PD technique. Flow Meas Instrum 19(3–4):163–169. DOI 10.1016/j.flowmeasinst.2007.08.008

    Article  CAS  Google Scholar 

  8. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712

    Article  CAS  Google Scholar 

  9. Blümich B, Casanova F, Appelt S (2009) NMR at low magnetic fields. Chem Phys Lett 477(4–6):231–240. DOI 10.1016/j.cplett.2009.06.096

    Article  Google Scholar 

  10. Brunn PO, Wunderlich T, Muller M (2004) Ultrasonic rheological studies of a body lotion. Flow Meas Instrum 15(3):139–144

    Article  Google Scholar 

  11. Buciuman F, Kraushaar-Czarnetzki B (2003) Ceramic foam monoliths as catalyst carriers. 1. Adjustment and description of the morphology. Ind Eng Chem Res 42(9):1863–1869. DOI 10.1021/ie0204134

    Google Scholar 

  12. Bürger R, Concha F, Karlsen KH (2001) Phenomenological model of filtration processes: 1. Cake formation and expression. Chem Eng Sci 56(15):4537–4553

    Google Scholar 

  13. Callaghan PT (1999) Rheo-NMR: Nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys 62(4):599–670

    Article  CAS  Google Scholar 

  14. Callaghan PT (2008) Rheo NMR and shear banding. Rheologica Acta 47(3):243–255. DOI 10.1007/s00397-007-0251-2

    Article  CAS  Google Scholar 

  15. Cano-Barrita PFdJ, Marble AE, Balcom BJ, Garcia JC, Masthikin IV, Thomas MDA, Bremner TW (2009) Embedded NMR sensors to monitor evaporable water loss caused by hydration and drying in Portland cement mortar. Cement Concrete Res 39(4):324–328. DOI 10.1016/j.cemconres.2009.01.011

    Google Scholar 

  16. Casanova F, Perlo J, Blümich B (2004) Velocity distributions remotely measured with a single-sided NMR sensor. J Magn Reson 171(1):124–130. DOI 10.1016/j.jmr.2004.08.008

    Article  CAS  Google Scholar 

  17. Chemmi H, Petit D, Levitz P, Korb JP (2010) NMR control of aging and durability of hardened cement pastes. CR Chim 13(4):405–408. DOI 10.1016/j.crci.2009.09.003

    Article  CAS  Google Scholar 

  18. Cheung MK, Powell RL, McCarthy MJ (1997) Nuclear-magnetic-resonance-imaging-based capillary rheometer. AICHE J 43(10):2596–2600

    Article  CAS  Google Scholar 

  19. Dicoi O, Walzel P, Blumich B, Rahse W (2004) Investigation of the drying behavior of solids by nuclear magnetic resonance. Chem Ing Tech 76(1–2):94–99. DOI 10.1002/cite.200403323. Meeting of the GVC committees on drying technology, heat and material transfer, Marburg, Germany, 17–19 March 2003

    Article  CAS  Google Scholar 

  20. Dirckx C, Clark S, Hall L, Antalek B, Tooma J, Hewitt J, Kawaoka K (2000) Magnetic resonance imaging of the filtration process. AICHE J 46(1):6–14

    Article  CAS  Google Scholar 

  21. Dolinsek J, Apih T, Lahajnar G, Blinc R, Papavassiliou G, Pintar M (1998) Two-dimensional nuclear magnetic resonance study of a hydrated porous medium: An application to white cement. J Appl Phys 83(7):3535–3540

    Article  CAS  Google Scholar 

  22. Emid S, Creyghton J (1985) High-resolution NMR imaging in solids. Physica B & C 128(1):81–83

    Article  CAS  Google Scholar 

  23. Erk A, Hardy EH, Althaus T, Stahl W (2006) Filtration of colloidal suspensions – MRI investigation and numerical simulation. Chem Eng Technol 29(7):828–831. DOI 10.1002/ceat.200600054

    Article  CAS  Google Scholar 

  24. Friedemann K, Stallmach F, Karger J (2006) NMR diffusion and relaxation studies during cement hydration – A non-destructive approach for clarification of the mechanism of internal post curing of cementitious materials. Cement Concrete Res 36(5):817–826. DOI 10.1016/j.cemconres.2005.12.007

    Article  CAS  Google Scholar 

  25. von Garnier A, Hardy EH, Schweitzer JM, Reimert R (2007) Differentiation of catalyst and catalyst support in a fixed bed by magnetic resonance imaging. Chem Eng Sci 62(18–20, Sp. Iss. SI):5330–5334. DOI 10.1016/j.ces.2007.03.034

    Google Scholar 

  26. Gibbs SJ, Haycock DE, Frith WJ, Ablett S, Hall LD (1997) Strategies for rapid NMR rheometry by magnetic resonance imaging velocimetry. J Magn Reson 125(1):43–51

    Article  CAS  Google Scholar 

  27. Gibbs SJ, James KL, Hall LD, Haycock DE, Frith WJ, Ablett S (1996) Rheometry and detection of apparent wall slip for Poiseuille flow of polymer solutions and particulate dispersions by nuclear magnetic resonance velocimetry. J Rheol 40(3):425–440

    Article  CAS  Google Scholar 

  28. Gibbs SJ, Xing D, Carpenter TA, Hall LD, Ablett S, Haycock D, Frith WJ (1994) NMR flow imaging of aqueous polysaccharide solutions. J Rheol 38(6):1757–1767

    Article  CAS  Google Scholar 

  29. Gladden LF, Alexander P (1996) Applications of nuclear magnetic resonance imaging in process engineering. Meas Sci Technol 7(3):423–435

    Article  CAS  Google Scholar 

  30. Greener J, Peemoeller H, Choi C, Holly R, Reardon E, Hansson C, Pintar M (2000) Monitoring of hydration of white cement paste with proton NMR spin–spin relaxation. J Am Ceram Soc 83(3):623–627

    Article  CAS  Google Scholar 

  31. Grosse J, Dietrich B, Martin H, Kind M, Vicente J, Hardy EH (2008) Volume image analysis of ceramic sponges. Chem Eng Technol 31(2):307–314. DOI 10.1002/ceat.200700403

    Article  CAS  Google Scholar 

  32. Haiduc AM, Trezza EE, van Dusschoten D, Reszka AA, van Duynhoven JPM (2007) Non-invasive ‘through-package’ assessment of the microstructural quality of a model food emulsion by the NMR MOUSE. LWT Food Sci Technol 40(4):737–743. DOI 10.1016/j.lwt.2006.02.026

    Article  CAS  Google Scholar 

  33. Halperin W, Jehng J, Song Y (1994) Application of spin–spin relaxation to measurement of surface areo and pore-size distributions in a hydrating cement paste. Magn Reson Imaging 12(2):169–173. 2nd International meeting on recent advances in MR applications to porous media, CANTERBURY, ENGLAND, 14–16 April 1993

    Google Scholar 

  34. Hansen E, Gran H, Kvernberg P, Pedersen B (1997) Surface-to-volume ratio of porous materials obtained by a combined use of NMR and MIP. J Phys Chem B 101(45):9206–9214

    Article  CAS  Google Scholar 

  35. Hansen E, Law P (1985) Recursive methods for computing the Abel transform and its inverse. J Opt Soc Am A 2(4):510–520

    Article  Google Scholar 

  36. Hardy EH, Hoferer J, Kasper G (2007) The mixing state of fine powders measured by magnetic resonance imaging. Powder Technol 177(1):12–22. DOI 10.1016/j.powtee.2007.02.042

    Article  CAS  Google Scholar 

  37. Hardy EH, Hoferer J, Mertens D, Kasper G (2009) Automated phase correction via maximization of the real signal. Magn Reson Imaging 27(3):393–400. DOI 10.1016/j.mri.2008.07.009

    Article  Google Scholar 

  38. Hardy EH, Mertens D, Hochstein B, Nirschl H (2009) Compact NMR-based Capillary Rheometer. In: Fischer P, Pollard M, Windhab EJ (eds) Proceedings of the 5th ISFRS, pp 94–97. http://www.isfrs.ethz.ch/proc/2009_proc. 5th International symposium on food rheology and structure, ETH Zrich, Zrich, 15–18 June 2009

  39. Hardy EH, Mertens D, Hochstein B, Nirschl H (2009) Kompaktes, NMR-gesttztes Kapillarrheometer. Chem Ing Tech 81(8):1100–1101

    Article  CAS  Google Scholar 

  40. van der Heijden GHA, van Bijnen RMW, Pel L, Huinink HP (2007) Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling. Cement Concrete Res 37(6):894–901. DOI 10.1016/j.cemconres.2007.03.004

    Article  Google Scholar 

  41. Herle V, Manneville S, Fischer P (2008) Ultrasound velocimetry in a shear-thickening wormlike micellar solution: Evidence for the coexistence of radial and vorticity shear bands. Eur Phys J E 26(1–2):3–12. DOI 10.1140/epje/i2007-10304-3

    Article  CAS  Google Scholar 

  42. Hieke M, Ruland J, Anlauf H, Nirschl H (2009) Analysis of the porosity of filter cakes obtained by filtration of colloidal suspensions. Chem Eng Technol 32(7):1095–1101. DOI 10.1002/ceat.200800609

    Article  CAS  Google Scholar 

  43. Hill KM, Caprihan A, Kakalios J (1997) Bulk segregation in rotated granular material measured by magnetic resonance imaging. Phys Rev Lett 78(1):50–53

    Article  CAS  Google Scholar 

  44. Hindman J (1966) Proton resonance shift of water in gas and liquid states. J Chem Phys 44(12):4582–4592

    Article  CAS  Google Scholar 

  45. Hoferer J, Lehmann MJ, Hardy EH, Meyer J, Kasper G (2006) Highly resolved determination of structure and particle deposition in fibrous filters by MRI. Chem Eng Technol 29(7):816–819. DOI 10.1002/ceat.200600047

    Article  CAS  Google Scholar 

  46. Hollingsworth K, Johns M (2003) Measurement of emulsion droplet sizes using PFG NMR and regularization methods. J Colloid Interface Sci 258(2):383–389. DOI 10.1016/S0021-9797(02)00131-5

    Article  CAS  Google Scholar 

  47. Hollingsworth K, Johns M (2005) Spatially resolved emulsion droplet sizing using inverse Abel transforms. J Magn Reson 176(1):71–78. DOI 10.1016/j.jmr.2005.05.019

    Article  CAS  Google Scholar 

  48. Hollingsworth K, Sederman A, Buckley C, Gladden L, Johns M (2004) Fast emulsion droplet sizing using NMR self-diffusion measurements. J Colloid Interface Sci 274(1):244–250. DOI 10.1016/j.jcis.2004.02.074

    Article  CAS  Google Scholar 

  49. Horsfield MA, Fordham EJ, Hall C, Hall LD (1989) H-1-NMR imaging studies of filtration in colloidal suspensions. J Magn Reson 81(3):593–596

    Article  Google Scholar 

  50. Hoskins B, Fevang L, Majors P, Sharma M, Georgiou G (1999) Selective imaging of biofilms in porous media by NMR relaxation. J Magn Reson 139(1):67–73

    Article  CAS  Google Scholar 

  51. Hutsel MR, Montarou CC, Dachevski AI, Gaylord TK (2008) Algorithm performance in the determination of the refractive-index profile of optical fibers. Appl Optics 47(6):760–767

    Article  Google Scholar 

  52. Jackson JA, Burnett LJ, Harmon JF (1980) Remote (inside-out) NMR.3. Detection of nuclear magnetic-resonance in a remotely produced region of homogeneous magnetic-field. J Magn Reson 41(3):411–421

    Google Scholar 

  53. Jehng J, Sprague D, Halperin W (1996) Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing. Magn Reson Imaging 14(7–8):785–791. 3rd International meeting on recent advances in MR applications to porous media, Louvian, Belgium, 03–06 September 1995

    Google Scholar 

  54. Johns M, Gladden L (2002) Sizing of emulsion droplets under flow using flow-compensating NMR-PFG techniques. J Magn Reson 154(1):142–145. DOI 10.1006/jmre.2001.2469

    Article  CAS  Google Scholar 

  55. Kessler RWH (ed) (2006) Prozessanalytik : Strategien und Fallbeispiele aus der industriellen Praxis. WILEY-VCH, Weinheim

    Google Scholar 

  56. Khokhlov A, Valiullin R, Kaerger J, Steinbach F, Feldhoff A (2007) Freezing and melting transitions of liquids in mesopores with ink-bottle geometry. New J Phys 9:1–9. DOI 10.1088/ 1367-2630/9/8/272

    Article  Google Scholar 

  57. Kimmich R (1997) NMR tomography, diffusometry, relaxometry. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  58. Knoerzer K, Regier M, Hardy EH, Schuchmann HP, Schubert H (2009) Simultaneous microwave heating and three-dimensional MRI temperature mapping. Innov Food Sci Emerg 10:537–544

    Article  Google Scholar 

  59. Koptyug I, Khitrina L, Parmon V, Sagdeev R (2001) NMR imaging of mass transport and related phenomena in porous catalysts and sorbents. Magn Reson Imaging 19(3–4):531–534

    Article  CAS  Google Scholar 

  60. Kotze R, Haldenwang R, Slatter P (2008) Rheological characterization of highly concentrated mineral suspensions using ultrasound velocity profiling with combined pressure difference method. Appl Rheol 18(6):1–10

    Google Scholar 

  61. Kriesten E, Alsmeyer F, Bardow A, Marquardt W (2008) Fully automated indirect hard modeling of mixture spectra. Chemom Intell Lab Syst 91(2):181–193. DOI 10.1016/j.chemolab.2007.11.004

    Article  CAS  Google Scholar 

  62. Lebihan D, Delannoy J, Levin R (1989) Temperature mapping with MR imaging of molecular-diffusion – Application to hyperthermia. Radiology 171(3):853–857

    CAS  Google Scholar 

  63. Lehmann MJ, Hardy EH, Meyer J, Kasper G (2003) Determination of fibre structure and packing density distribution in depth filtration media by means of MRI. Chem Ing Tech 75(9):1283–1286. DOI 10.1002/cite.200303229

    Article  CAS  Google Scholar 

  64. Lehmann MJ, Hardy EH, Meyer J, Kasper G (2005) MRI as a key tool for understanding and modeling the filtration kinetics of fibrous media. Magn Reson Imaging 23(2):341–342. DOI 10.1016/j.mri.2004.11.048

    Article  CAS  Google Scholar 

  65. Majors P, Caprihan A (1991) Fast radial imaging of circular and spherical objects by NMR. J Magn Reson 94(2):225–233

    Article  Google Scholar 

  66. Martin H (1978) Low peclet number particle-to-fluid heat and mass-transfer in packed-beds. Chem Eng Sci 33(7):913–919

    Article  CAS  Google Scholar 

  67. McDonald PJ, Rodin V, Valori A (2010) Characterisation of intra- and inter-C-S-H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content. Cement Concrete Res 40(12):1656–1663. DOI 10.1016/j.cemconres.2010.08.003

    Article  CAS  Google Scholar 

  68. Mertens D, Hardy EH, Hochstein B, Guthausen G (2009) A low-field-NMR capillary rheometer. In: Guojonsdottir M, Belton P, Webb G (eds) Magnetic resonance in food science: Challenges in a changing world, pp 81–88. 9th International conference on applications of magnetic resonance in food science, Reykjavik, Iceland, 15–17 September 2008

    Google Scholar 

  69. Metzger U, Lankes U, Hardy EH, Gordalla BC, Frimmel FH (2006) Monitoring the formation of an Aureobasidium pullulans biofilm in a bead-packed reactor via flow-weighted magnetic resonance imaging. Biotechnol Lett 28(16):1305–1311. DOI 10.1007/s10529-006-9091-x

    Article  CAS  Google Scholar 

  70. Muller M, Brunn PO, Wunderlich T (1997) New rheometric technique: The gradient-ultrasound pulse Doppler method. Appl Rheol 7(5):204–210

    CAS  Google Scholar 

  71. Murday J, Cotts R (1968) Self-diffusion coefficient of liquid lithium. J Chem Phys 48(11):4938–4945

    Article  CAS  Google Scholar 

  72. Nakagawa M, Altobelli SA, Caprihan A, Fukushima E, Jeong EK (1993) Noninvasive measurements of granular flows by magnetic-resonance-imaging. Exp Fluids 16(1):54–60

    Article  Google Scholar 

  73. Nestle N, Kuehn A, Friedemann K, Horch C, Stallmach F, Herth G (2009) Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR. Micropor Mesopor Mat 125(1–2, Sp. Iss. SI):51–57. DOI 10.1016/j.micromeso.2009.02.024

    Google Scholar 

  74. Nguyen NL, van Buren V, von Garnier A, Hardy EH, Reimert R (2005) Application of Magnetic Resonance Imaging (MRI) for investigation of fluid dynamics in trickle bed reactors and of droplet separation kinetics in packed beds. Chem Eng Sci 60(22):6289–6297. DOI 10.1016/j.ces.2005.04.083

    Article  CAS  Google Scholar 

  75. Nguyen NL, Reimert R, Hardy EH (2006) Application of magnetic resonance imaging (MRI) to determine the influence of fluid dynamics on desulfurization in bench scale reactors. Chem Eng Technol 29(7):820–827. DOI 10.1002/ceat200600058

    Article  CAS  Google Scholar 

  76. Noll DC, Nishimura DG, Macovski A (1991) Homodyne detection in magnetic-resonance-imaging. IEEE Trans Med Imaging 10(2):154–163

    Article  CAS  Google Scholar 

  77. Nott K, Hall L, Bows J, Hale M, Patrick M (1999) Three-dimensional MRI mapping of microwave induced heating patterns. Int J Food Sci Technol 34(4):305–315

    Article  CAS  Google Scholar 

  78. Nott K, Paterson-Beedle M, Macaskie L, Hall L (2001) Visualisation of metal deposition in biofilm reactors by three-dimensional magnetic resonance imaging (MRI). Biotechnol Lett 23(21):1749–1757

    Article  CAS  Google Scholar 

  79. Ouriev B, Windhab E, Braun P, Birkhofer B (2004) Industrial application of ultrasound based in-line rheometry: From stationary to pulsating pipe flow of chocolate suspension in precrystallization process. Rev Sci Instrum 75(10, Part 1):3164–3168. DOI 10.1063/1.1790585

    Google Scholar 

  80. Ouriev B, Windhab EJ (2002) Rheological study of concentrated suspensions in pressure-driven shear flow using a novel in-line ultrasound Doppler method. Exp Fluids 32(2):204–211. DOI 10.1007/s003480100345

    Google Scholar 

  81. Pedersen H, Ablett S, Martin D, Mallett M, Engelsen S (2003) Application of the NMR-MOUSE to food emulsions. J Magn Reson 165(1):49–58. DOI 10.1016/S1090-7807(03)00243-X

    Article  CAS  Google Scholar 

  82. Peller M, Kurze V, Loeffler R, Pahernik S, Dellian M, Goetz A, Issels R, Reiser M (2003) Hyperthermia induces T-1 relaxation and blood flow changes in tumors. A MRI thermometry study in vivo. Magn Reson Imaging 21(5):545–551. DOI 10.1016/S0730-725X(03)00070-5

    Google Scholar 

  83. Perlo J, Casanova F, Blümich B (2005) Velocity imaging by ex situ NMR. J Magn Reson 173(2):254–258. DOI 10.1016/j.jmr.2004.12.010

    Article  CAS  Google Scholar 

  84. Pernenkil L, Cooney CL (2006) A review on the continuous blending of powders. Chem Eng Sci 61(2):720–742. DOI 10.1016/j.ces.2005.06.016

    Article  CAS  Google Scholar 

  85. Porion P, Sommier N, Faugere AM, Evesque P (2004) Dynamics of size segregation and mixing of granular materials in a 3D-blender by NMR imaging investigation. Powder Technol 141(1–2):55–68. DOI 10.1016/j.powtec.2004.02.015

    Article  CAS  Google Scholar 

  86. Prado P, Balcom B, Beyea S, Bremner T, Armstrong R, Grattan-Bellew P (1998) Concrete freeze/thaw as studied by magnetic resonance imaging. Cement Concrete Res 28(2):261–270

    Article  CAS  Google Scholar 

  87. Regier M, Hardy EH, Knoerzer K, Leeb CV, Schuchmann HP (2007) Determination of structural and transport properties of cereal products by optical scanning, magnetic resonance imaging and Monte Carlo simulations. J Food Eng 81(2):485–491. DOI 10.1016/j.jfoodeng.2006.11.025

    Article  Google Scholar 

  88. Regier M, Idda P, Knoerzer K, Hardy EH, Schuchmann HR (2006) Temperature- and water distribution in convective drying by means of inline magnetic resonance tomography. Chem Ing Tech 78(8):1112–1115. DOI 10.1002/cite.200600041

    Article  CAS  Google Scholar 

  89. Ren X, Stapf S, Blümich B (2005) NMR velocimetry of flow in model fixed-bed reactors of low aspect ratio. AICHE J 51(2):392–405

    Article  CAS  Google Scholar 

  90. Schmidt E (2008) Dust separation. In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 1–37.

    Google Scholar 

  91. Schweers E, Loffler F (1994) Realistic modeling of the behavior of fibrous filters through consideration of filter structure. Powder Technol 80(3):191–206

    Article  Google Scholar 

  92. Seymour J, Codd S, Gjersing E, Stewart P (2004) Magnetic resonance microscopy of biofilm structure and impact on transport in a capillary bioreactor. J Magn Reson 167(2):322–327. DOI 10.1016/j.jmr.2004.01.009

    Article  CAS  Google Scholar 

  93. Sommer K (2008) Mixing of solids. In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 1–17.

    Google Scholar 

  94. Song Y, Ryu S, Sen P (2000) Determining multiple length scales in rocks. Nature 406(6792):178–181

    Article  CAS  Google Scholar 

  95. Stahl S, Spelter LE, Nirschl H (2008) Investigations on the separation efficiency of tubular bowl centrifuges. Chem Eng Technol 31(11):1577–1583. DOI 10.1002/ceat.200800300

    Article  CAS  Google Scholar 

  96. Topgaard D, Malmborg C, Soderman O (2002) Restricted self-diffusion of water in a highly concentrated W/O emulsion studied using modulated gradient spin-echo NMR. J Magn Reson 156(2):195–201. DOI 10.1006/jmre.2002.2556

    Article  CAS  Google Scholar 

  97. Uludag Y, Powell RL, McCarthy MJ (2004) Effects of periodic flow fluctuations on magnetic resonance flow images. AICHE J 50(8):1662–1671. DOI 10.1002/aic.10152

    Article  CAS  Google Scholar 

  98. Valiullin R, Kaerger J, Glaeser R (2009) Correlating phase behaviour and diffusion in mesopores: perspectives revealed by pulsed field gradient NMR. Phys Chem Chem Phys 11(16):2833–2853. DOI 10.1039/b822939b

    Article  CAS  Google Scholar 

  99. Vicente J, Topin F, Daurelle JV (2006) Open celled material structural properties measurement: From morphology to transport properties. Mater Trans 47(9):2195–2202. DOI 10.2320/matertrans.47.2195

    Article  CAS  Google Scholar 

  100. Vicharelli P, Lapatovich W (1987) Iterative method for computing the inverse Abel transform. Appl Phys Lett 50(10):557–559

    Article  Google Scholar 

  101. Wiklund J, Shahram I, Stading M (2007) Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques. Chem Eng Sci 62(16):4277–4293. DOI 10.1016/j.ces.2007.05.007

    Article  CAS  Google Scholar 

  102. Wlodarczyk W, Boroschewski R, Hentschel M, Wust P, Monich G, Felix R (1998) Three-dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR. J Magn Reson Imaging 8(1):165–174

    Article  CAS  Google Scholar 

  103. Wolf F, Hecht L, Schuchmann HP, Hardy EH, Guthausen G (2009) Preparation of W-1/O/W-2 emulsions and droplet size distribution measurements by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) technique. Eur J Lipid Sci Tech 111(7):730–742. DOI 10.1002/ejlt.200800272

    Article  CAS  Google Scholar 

  104. Wu DH, Chen A, Johnson CS (1995) Flow imaging by means of 1D pulsed-field-gradient NMR with application to electroosmotic flow. J Magn Reson Ser A 115(1):123–126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edme H. Hardy .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hardy, E.H. (2012). Applications. In: NMR Methods for the Investigation of Structure and Transport. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21628-2_4

Download citation

Publish with us

Policies and ethics