Skip to main content
  • 1274 Accesses

Abstract

In the chapter on hardware first the commercially available micro-imaging system and low-field system employed in the applications are presented. The latter is equipped with a one-axis bipolar gradient system. Properties of common permanent-magnet materials are compiled. Specifically designed parts described in some detail include an actively shielded gradient system for the transverse field geometry encountered in permanent-magnet systems, an inside-out setup, as well as a simple, compact, and efficient Halbach magnet. A common probe-matching network is analyzed in an intuitive representation used in electrical engineering and applied to a simple solenoid operating at 10 MHz. The chapter is concluded by the description of a flow loop used for rheological and online measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A network analyzer capable of measuring the S 11 parameter including phase is sufficient. The impedance of the device under test is conveniently represented in a Smith chart. A cable must be used to connect the analyzer to the receiving element. Its influence on the measured impedance can be corrected automatically if the analyzer has an “extended port” option.

References

  1. Blümich B (2000) NMR imaging of materials. Clarendon Press, Oxford

    Google Scholar 

  2. Blümich B, Anferov V, Anferova S, Klein M, Fechete R, Adams M, Casanova F (2002) Simple NMR-MOUSE with a bar magnet. Concept Magnetic Res 15(4):255–261. DOI 10.1002/cmr.10046

    Article  Google Scholar 

  3. Blümich B, Blümler P, Eidmann G, Guthausen A, Haken R, Schmitz U, Saito K, Zimmer G (1998) The NMR-mouse: Construction, excitation, and applications. Magn Reson Imaging 16(5–6):479–484

    Article  Google Scholar 

  4. Blümich B, Casanova F, Appelt S (2009) NMR at low magnetic fields. Chem Phys Lett 477(4–6):231–240. DOI 10.1016/j.cplett.2009.06.096

    Article  Google Scholar 

  5. Blümich B, Mauler J, Haber A, Perlo J, Danieli E, Casanova F (2009) Mobile NMR for geophysical analysis and materials testing. Pet Sci 6(1):1–7. DOI 10.1007/ s12182-009-0001-4

    Article  Google Scholar 

  6. Bowtell R, Mansfield P (1990) Screened coil designs for NMR imaging in magnets with transverse field geometry. Meas Sci Technol 1(5):431–439

    Article  Google Scholar 

  7. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford

    Google Scholar 

  8. Danieli E, Mauler J, Perlo J, Blümich B, Casanova F (2009) Mobile sensor for high resolution NMR spectroscopy and imaging. J Magn Reson 198(1):80–87. DOI 10.1016/ j.jmr.2009.01.022

    Article  CAS  Google Scholar 

  9. Danieli E, Perlo J, Bluemich B, Casanova F (2010) Small magnets for portable NMR spectrometers. Angew Chem Int Edit 49(24):4133–4135. DOI 10.1002/anie.201000221

    CAS  Google Scholar 

  10. Fukushima E, Roeder SBW (1981) Experimental pulse NMR: A nuts and bolts approach. Addison-Wesley, Reading, MA

    Google Scholar 

  11. Hardy EH, Mertens D, Hochstein B, Nirschl H (2009) Compact NMR-based capillary rheometer. In: Fischer P, Pollard M, Windhab EJ (eds) Proceedings of the 5th ISFRS, pp 94–97. http://www.isfrs.ethz.ch/proc/2009_proc. 5th International symposium on food rheology and structure, ETH Zrich, Zrich, 15–18 June 2009

  12. Hardy EH, Mertens D, Hochstein B, Nirschl H (2009) Kompaktes, NMR-gesttztes Kapillarrheometer. Chem Ing Tech 81(8):1100–1101

    Article  CAS  Google Scholar 

  13. Hills B, Wright K, Gillies D (2005) A low-field, low-cost Halbach magnet array for open-access NMR. J Magn Reson 175(2):336–339. DOI 10.1016/j.jmr.2005.04.015

    Article  CAS  Google Scholar 

  14. Jackson JA, Burnett LJ, Harmon JF (1980) Remote (inside-out) NMR.3. Detection of nuclear magnetic-resonance in a remotely produced region of homogeneous magnetic-field. J Magn Reson 41(3):411–421

    Google Scholar 

  15. Jin J (1999) Electromagnetic analysis and design in magnetic resonance imaging. CRC Press, Boca Raton

    Google Scholar 

  16. Kuhns PL, Lizak MJ, Lee SH, Conradi MS (1988) Inductive coupling and tuning in NMR probes – Applications. J Magn Reson 78(1):69–76

    Article  Google Scholar 

  17. Manz B, Coy A, Dykstra R, Eccles CD, Hunter MW, Parkinson BJ, Callaghan PT (2006) A mobile one-sided NMR sensor with a homogeneous magnetic field: The NMR-MOLE. J Magn Reson 183(1):25–31. DOI 10.1016/j.jmr.2006.07.017

    Article  CAS  Google Scholar 

  18. McDonald PJ, Aptaker PS, Mitchell J, Mulheron M (2007) A unilateral NMR magnet for sub-structure analysis in the built environment: The surface GARField. J Magn Reson 185(1):1–11. DOI 10.1016/j.jmr.2006.11.001

    Article  CAS  Google Scholar 

  19. McDowell A, Fukushima E (2008) Ultracompact NMR: H-1 spectroscopy in a subkilogram magnet. Appl Magn Reson 35(1):185–195. DOI 10.1007/ s00723-008-0151-3

    Article  CAS  Google Scholar 

  20. Mertens D, Hardy EH, Hochstein B, Guthausen G (2009) A low-field-NMR capillary rheometer. In: Guojonsdottir M, Belton P, Webb G (eds) Magnetic resonance in food science: Challenges in a changing world, pp 81–88. 9th International conference on applications of magnetic resonance in food science, Reykjavik, Iceland, 15–17 September 2008

    Google Scholar 

  21. Mispelter J, Lupu M, Briguet A (2006) NMR probeheads for biophysical and biomedical experiments : Theoretical principles and practical guidelines. Imperial College Press, London

    Google Scholar 

  22. Perlo J, Casanova F, Blümich B (2004) 3D imaging with a single-sided sensor: An open tomograph. J Magn Reson 166(2):228–235. DOI 10.1016/j.jmr.2003.10.018

    Article  CAS  Google Scholar 

  23. Perlo J, Casanova F, Blümich B (2007) Ex situ NMR in highly homogeneous fields: H-1 spectroscopy. Science 315(5815):1110–1112. DOI 10.1126/science.1135499

    Article  CAS  Google Scholar 

  24. Raich H, Blumler P (2004) Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR mandhalas. Concept Magn Res B 23B(1):16–25. DOI 10.1002/cmr.b.20018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edme H. Hardy .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hardy, E.H. (2012). Hardware. In: NMR Methods for the Investigation of Structure and Transport. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21628-2_3

Download citation

Publish with us

Policies and ethics