Skip to main content

Nicotinamide Coenzyme Synthesis: A Case of Ribonucleotide Emergence or a Byproduct of the RNA World?

  • Chapter
  • First Online:
Origins of Life: The Primal Self-Organization

Abstract

Coenzymes likely represent the oldest metabolic fossils within a cell, as suggested by their presence and essentiality in all kingdoms of life and the autocatalytic nature of their biosynthetic pathways. The presence of a ribonucleotidyl group in the structure of most coenzymes that use it as a “handle” for binding to the protein catalyst means that ribonucleotides must have been present at the time coenzymes emerged. An open question remains whether the ribonucleotidyl group has been co-opted from a preexisting RNA in a primordial “RNA world” before the emergence of proteins, or it represents the evolutionary predecessor of contemporary nucleic acids. The nicotinamide coenzyme NAD (P) is one of the oldest molecules, not only in the history of biochemistry, but also in the evolutionary steps towards the emergence of life. Together with relatively simple organics, such as PRPP (5′-phosphoribosyl 1′-pyrophosphate), PLP (pyridoxal 5′-phosphate) and many others, it may have been a crucial prebiotic agent in organizing a collectively autocatalytic protometabolic ecosystem. Here, the NAD(P) biosynthetic pathway will be described with views on its origin. NAD(P)’s peculiar biochemical features will also be discussed with the aim to offer novel arguments to the debate on the sequence of chemical evolution in the origin of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FAD:

flavin adenine dinucleotide

FMN:

flavin mononucleotide

NAD:

nicotinamide adenine dinucleotide

NaMN:

nicotinate mononucleotide

NMN:

nicotinamide mononucleotide

PLP:

pyridoxal-5′-phosphate

PR:

phosphoribosyl

PRPP:

5′-phosphoribosyl 1′-pyrophosphate

References

  • Agmon I (2009) The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int J Mol Sci 10:2921–2934

    Article  PubMed  CAS  Google Scholar 

  • Aylward N, Bofinger N (2006) A plausible prebiotic synthesis of pyridoxal phosphate: vitamin B6 – a computational study. Biophys Chem 123:113–121

    Article  PubMed  CAS  Google Scholar 

  • Begley TP (2006) Cofactor biosynthesis: an organic chemist’s treasure trove. Nat Prod Rep 23:15–25

    Article  PubMed  CAS  Google Scholar 

  • Bello Z, Grubmeyer C (2010) Roles for cationic residues at the quinolinic acid binding site of quinolinate phosphoribosyltransferase. Biochemistry 49:1388–1395

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR, Joyce GF (1995) Self-incorporation of coenzymes by ribozymes. J Mol Evol 40:551–558

    Article  PubMed  CAS  Google Scholar 

  • Brenner C (2005) Evolution of NAD biosynthetic enzymes. Structure 13:1239–1240

    Article  PubMed  CAS  Google Scholar 

  • Burgstaller P, Famulok M (1994) Isolation of RNA aptamers for biological cofactors by in-vitro selection. Angew Chem Int Ed Engl 33:1084–1087

    Article  Google Scholar 

  • Butterfield SM, Goodman CM, Rotello VM, Waters ML (2004) A peptide flavoprotein mimic: flavin recognition and redox potential modulation in water by a designed beta hairpin. Angew Chem Int Ed Engl 43:724–727

    Article  PubMed  CAS  Google Scholar 

  • Butterfield SM, Sweeney MM, Waters ML (2005) The recognition of nucleotides with model beta-hairpin receptors: investigation of critical contacts and nucleotide selectivity. J Org Chem 70:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Butterfield SM, Waters ML (2003) A designed beta-hairpin peptide for molecular recognition of ATP in water. J Am Chem Soc 125:9580–9581

    Article  PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Carny O, Gazit E (2011) Creating prebiotic sanctuary: self-assembling supramolecular peptide structures bind and stabilize RNA. Orig Life Evol Biosph 41:121–132

    Google Scholar 

  • Chappie JS, Canaves JM, Han GW, Rife CL, Xu Q, Stevens RC (2005) The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases. Structure 13:1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Li N, Ellington AD (2007) Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 4:633–655

    Article  PubMed  CAS  Google Scholar 

  • Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR (2009) LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol 5:879–881

    Article  PubMed  CAS  Google Scholar 

  • Cleaves HJ, Miller SL (2001) The nicotinamide biosynthetic pathway is a by-product of the RNA world. J Mol Evol 52:73–77

    PubMed  CAS  Google Scholar 

  • Copley SD, Smith E, Morowitz HJ (2005) A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci USA 102:4442–4447

    Article  PubMed  CAS  Google Scholar 

  • Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443

    Article  PubMed  CAS  Google Scholar 

  • Davidovich C, Belousoff M, Bashan A, Yonath A (2009) The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 160:487–492

    Article  PubMed  CAS  Google Scholar 

  • de Duve C (1987) Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proc Natl Acad Sci USA 84:8253–8256

    Article  PubMed  Google Scholar 

  • de Duve C (2007) Chemistry and selection. Chem Biodivers 4:574–583

    Article  PubMed  Google Scholar 

  • Denessiouk KA, Rantanen VV, Johnson MS (2001) Adenine recognition: a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins. Proteins 44:282–291

    Article  PubMed  CAS  Google Scholar 

  • Denesyuk AI, Denessiouk KA, Korpela T, Johnson MS (2002) Functional attributes of the phosphate group binding cup of pyridoxal phosphate-dependent enzymes. J Mol Biol 316:155–172

    Article  PubMed  CAS  Google Scholar 

  • Dowler MJ, Fuller WD, Orgel LE, Sanchez RA (1970) Prebiotic synthesis of propiolaldehyde and nicotinamide. Science 169:1320–1321

    Article  PubMed  CAS  Google Scholar 

  • Egel R (2009) Peptide-dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. Bioessays 31:1100–1109

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T (2007) Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J 407:1–13

    Article  PubMed  CAS  Google Scholar 

  • Fleminger G, Yaron T, Eisenstein M, Bar-Nun A (2005) The structure and synthetic capabilities of a catalytic peptide formed by substrate-directed mechanism – implications to prebiotic catalysis. Orig Life Evol Biosph 35:369–382

    Article  PubMed  CAS  Google Scholar 

  • Focia PJ, Craig SP 3rd, Eakin AE (1998) Approaching the transition state in the crystal structure of a phosphoribosyltransferase. Biochemistry 37:17120–17127

    Article  PubMed  CAS  Google Scholar 

  • Friedmann N, Miller SL, Sanchez RA (1971) Primitive earth synthesis of nicotinic acid derivatives. Science 171:1026–1027

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Furuta H, Ikawa Y (2009) Tailoring RNA modular units on a common scaffold: a modular ribozyme with a catalytic unit for beta-nicotinamide mononucleotide-activated RNA ligation. RNA 15:877–888

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY, Koonin EV (2004) “Conserved hypothetical” proteins: prioritization of targets for experimental study. Nucleic Acids Res 32:5452–5463

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga F, Stebbins R, Chang SZ, McPeek MA, Brenner C (2009) Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev 73:529–541, Table of Contents

    Article  PubMed  CAS  Google Scholar 

  • Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082

    Article  PubMed  CAS  Google Scholar 

  • Huang F (2003) Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res 31:e8

    Article  PubMed  Google Scholar 

  • Huang F, Bugg CW, Yarus M (2000) RNA-catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. Biochemistry 39:15548–15555

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Yang Z, Yarus M (1998) RNA enzymes with two small-molecule substrates. Chem Biol 5:669–678

    Article  PubMed  CAS  Google Scholar 

  • Huang N, De Ingeniis J, Galeazzi L, Mancini C, Korostelev YD, Rakhmaninova AB, Gelfand MS, Rodionov DA, Raffaelli N, Zhang H (2009) Structure and function of an ADP-ribose-dependent transcriptional regulator of NAD metabolism. Structure 17:939–951

    Article  PubMed  CAS  Google Scholar 

  • Imperiali B, McDonnell KA, Shogren-Knaak M (1999) Design and construction of novel peptides and proteins by tailored incorporation of coenzyme functionality. Topics in Current Chemistry 202:1–38

    Article  CAS  Google Scholar 

  • Issac R, Chmielewski J (2002) Approaching exponential growth with a self-replicating peptide. J Am Chem Soc 124:6808–6809

    Article  PubMed  CAS  Google Scholar 

  • Jadhav VR, Yarus M (2002) Coenzymes as coribozymes. Biochimie 84:877–888

    Article  PubMed  CAS  Google Scholar 

  • Ji HF, Kong DX, Shen L, Chen LL, Ma BG, Zhang HY (2007) Distribution patterns of small-molecule ligands in the protein universe and implications for origin of life and drug discovery. Genome Biol 8:R176

    Article  PubMed  Google Scholar 

  • Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG (2005) The macro domain is an ADP-ribose binding module. EMBO J 24:1911–1920

    Article  PubMed  CAS  Google Scholar 

  • Koch-Nolte F, Haag F, Guse AH, Lund F, Ziegler M (2009) Emerging roles of NAD + and its metabolites in cell signaling. Sci Signal 2:mr1

    Google Scholar 

  • Kowtoniuk WE, Shen Y, Heemstra JM, Agarwal I, Liu DR (2009) A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc Natl Acad Sci USA 106:7768–7773

    Article  PubMed  CAS  Google Scholar 

  • Kritsky M, Telegina T (2005) Role of nucleotide-like coenzymes in primitive evolution. In: Seckbach J (ed) Origins: cellular origin, life in extreme habitats and astrobiology. Kluwer Academic Publishers, Dordrecht, pp 215–231

    Google Scholar 

  • Kun A, Papp B, Szathmary E (2008) Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biol 9:R51

    Article  PubMed  Google Scholar 

  • Kurland CG (2010) The RNA dreamtime: modern cells feature proteins that might have supported a prebiotic polypeptide world but nothing indicates that RNA world ever was. Bioessays 32:866–871

    Google Scholar 

  • Lauhon CT, Szostak JW (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J Am Chem Soc 117:1246–1257

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Orgel LE (1995) Enzymatic synthesis of polymers containing nicotinamide mononucleotide. Nucleic Acids Res 23:3742–3749

    Article  PubMed  CAS  Google Scholar 

  • Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S (1999) Enzymology of NAD + synthesis. Adv Enzymol Relat Areas Mol Biol 73:135–182

    Article  PubMed  CAS  Google Scholar 

  • Milner-White EJ, Russell MJ (2005) Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig Life Evol Biosph 35:19–27

    Article  PubMed  CAS  Google Scholar 

  • Milner-White EJ, Russell MJ (2008) Predicting the conformations of peptides and proteins in early evolution. A review article submitted to Biology Direct. Biol Direct 3:3

    Google Scholar 

  • Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756

    Article  PubMed  CAS  Google Scholar 

  • Mittenhuber G (2001) Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol 3:1–20

    PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2007) Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: towards the consensus paradigm of the abiogenic origin of life. Chem Biodivers 4:2003–2015

    Article  PubMed  CAS  Google Scholar 

  • Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  PubMed  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode BM (2005) Prebiotic chemistry: the amino acid and peptide world. Curr Org Chem 9:1107–1114

    Article  CAS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  PubMed  CAS  Google Scholar 

  • Pross A (2004) Causation and the origin of life. Metabolism or replication first? Orig Life Evol Biosph 34:307–321

    Article  PubMed  CAS  Google Scholar 

  • Rode BM, Fitz D, Jakschitz T (2007) The first steps of chemical evolution towards the origin of life. Chem Biodivers 4:2674–2702

    Article  PubMed  CAS  Google Scholar 

  • Rodionov DA, De Ingeniis J, Mancini C, Cimadamore F, Zhang H, Osterman AL, Raffaelli N (2008) Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res 36:2047–2059

    Article  PubMed  CAS  Google Scholar 

  • Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465

    Article  PubMed  CAS  Google Scholar 

  • Scapin G, Ozturk DH, Grubmeyer C, Sacchettini JC (1995) The crystal structure of the orotate phosphoribosyltransferase complexed with orotate and alpha-D-5-phosphoribosyl-1-pyrophosphate. Biochemistry 34:10744–10754

    Article  PubMed  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  • Seelig B, Szostak JW (2007) Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448:828–831

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Grubmeyer C, Sacchettini JC (1998) Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target. Structure 6:1587–1599

    Article  PubMed  CAS  Google Scholar 

  • Sharov AA (2009) Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int J Mol Sci 10:1838–1852

    Article  PubMed  CAS  Google Scholar 

  • Sinha SC, Smith JL (2001) The PRT protein family. Curr Opin Struct Biol 11:733–739

    Article  PubMed  CAS  Google Scholar 

  • Sorci L, Kurnasov O, Rodionov DA, Osterman AL (2010) Genomics and enzymology of NAD biosynthesis. In: Lui H-W, Mander L (eds) Comprehensive natural products, II Chemistry and biology. Elsevier, Oxford, pp 213–257

    Chapter  Google Scholar 

  • Spinelli SL, Kierzek R, Turner DH, Phizicky EM (1999) Transient ADP-ribosylation of a 2'-phosphate implicated in its removal from ligated tRNA during splicing in yeast. J Biol Chem 274:2637–2644

    Article  PubMed  CAS  Google Scholar 

  • Steiger MA, Jackman JE, Phizicky EM (2005) Analysis of 2'-phosphotransferase (Tpt1p) from Saccharomyces cerevisiae: evidence for a conserved two-step reaction mechanism. RNA 11:99–106

    Article  PubMed  CAS  Google Scholar 

  • Sudarsan N, Barrick JE, Breaker RR (2003) Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647

    Article  PubMed  CAS  Google Scholar 

  • Tsukiji S, Pattnaik SB, Suga H (2003) An alcohol dehydrogenase ribozyme. Nat Struct Biol 10:713–717

    Article  PubMed  CAS  Google Scholar 

  • Vacca RA, Giannattasio S, Capitani G, Marra E, Christen P (2008) Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme. BMC Biochem 9:17

    Article  PubMed  Google Scholar 

  • van der Gulik P, Massar S, Gilis D, Buhrman H, Rooman M (2009) The first peptides: the evolutionary transition between prebiotic amino acids and early proteins. J Theor Biol 261:531–539

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  • Watson JD, Milner-White EJ (2002) A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi, psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J Mol Biol 315:171–182

    Article  PubMed  CAS  Google Scholar 

  • Weber AL, Pizzarello S (2006) The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc Natl Acad Sci USA 103:12713–12717

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Hecht MH (2004) Enzyme-like proteins from an unselected library of designed amino acid sequences. Protein Eng Des Sel 17:67–75

    Article  PubMed  CAS  Google Scholar 

  • White HB 3rd (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA (2007) Nutrient-sensitive mitochondrial NAD + levels dictate cell survival. Cell 130:1095–1107

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Savchenko A, Yakunin A, Zhang R, Edwards A, Arrowsmith C, Tong L (2003) Aspartate dehydrogenase, a novel enzyme identified from structural and functional studies of TM1643. J Biol Chem 278:8804–8808

    Article  PubMed  CAS  Google Scholar 

  • Yarus M (2011) Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb Perspect Biol 3:00003590

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Raffaelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raffaelli, N. (2011). Nicotinamide Coenzyme Synthesis: A Case of Ribonucleotide Emergence or a Byproduct of the RNA World?. In: Egel, R., Lankenau, DH., Mulkidjanian, A. (eds) Origins of Life: The Primal Self-Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21625-1_9

Download citation

Publish with us

Policies and ethics