Skip to main content

Salt-Induced Peptide Formation in Chemical Evolution: Building Blocks Before RNA – Potential of Peptide Splicing Reactions

  • Chapter
  • First Online:
Origins of Life: The Primal Self-Organization

Abstract

From a chemical point of view, it seems likely that peptides and smaller proteins were the first biomolecules which may have formed on the prebiotic Earth. In the presence of sodium chloride and copper ions, amino acids are readily connected to oligomers via the Salt-Induced Peptide Formation (SIPF) reaction mechanism in aqueous solution under locally conceivable primitive Earth conditions. The SIPF reaction shows some specific properties suggesting a close relationship to modern life forms, like a preference for α-amino acids and even stereospecific differentiation in favour of the l-forms of some amino acids. Furthermore, the amino acid sequences which are preferably formed by this reaction can still be found with a probability much above average in proteins of still existing life forms, like archaea and other prokaryotic cells. Once formed, even short peptides have a number of highly interesting abilities pointing towards possible further evolutionary pathways: chain elongation on the surface of clay minerals, formation of nanovesicles with membrane-like structure, autocatalytic self-replication from fragments, stabilisation of phosphate ions against precipitation, etc.

When at a later stage of chemical evolution the RNA/DNA based replication mechanism began to establish, initially it would probably just have reproduced and gradually replaced peptides and proteins which had existed before and already had exerted some biochemical impact on the environment. By splicing preexisting peptides to larger proteins, the complexity and diversity of biomolecules could have undergone a tremendous progress at that period of evolution towards the highly complex life forms populating the Earth nowadays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Farawati R, van den Berg CMG (1999) Metal-sulfide complexation in seawater. Mar Chem 63:331–352

    CAS  Google Scholar 

  • Andini S, Benedetti E, Ferrara L, Paolillo L, Temussi PA (1975) NMR studies of prebiotic polypeptides. Orig Life Evol Biosph 6:147–153

    CAS  Google Scholar 

  • Bada JL, Lazcano A (2003) Prebiotic soup – revisiting the Miller experiment. Science 300:745–746

    PubMed  CAS  Google Scholar 

  • Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: Relaxation of the requirements for prebiotic purine nucleobase formation. Chembiochem 11:1240–1243

    PubMed  CAS  Google Scholar 

  • Basiuk VA, Gromovoy TY, Golovaty VG, Glukhoy AM (1990) Mechanisms of amino acid polycondensation on silica and alumina surfaces. Orig Life Evol Biosph 20:483–498

    Google Scholar 

  • Berger R, Quack M (2000) Electroweak quantum chemistry of alanine: parity violation in gas and condensed phase. Chemphyschem 1:57–60

    CAS  Google Scholar 

  • Brack A, Louembe D, Spach G (1975) Polymerization of amino acid methyl esters via their copper complexes. Orig Life 6:407–411

    PubMed  CAS  Google Scholar 

  • Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 21:22–26

    Google Scholar 

  • Bujdak J, Rode BM (1996) The effect of Smectite composition on the catalysis of peptide bond formation. J Mol Evol 43:326–333

    PubMed  CAS  Google Scholar 

  • Bujdak J, Rode BM (1997) Silica, alumina, and clay-catalyzed alanine peptide bond formation. J Mol Evol 45:457–466

    CAS  Google Scholar 

  • Bujdak J, Rode BM (1999) Silica, alumina and clay catalyzed peptide bond formation: enhanced efficiency of alumina catalyst. Orig Life Evol Biosph 29:451–461

    PubMed  CAS  Google Scholar 

  • Bujdak J, Rode BM (2001) Activated alumina as an energy source for peptide bond formation: consequences for mineral-mediated prebiotic processes. Amino Acids 21:281–291

    PubMed  CAS  Google Scholar 

  • Bujdak J, Rode BM (2003) Alumina catalyzed reactions of amino acids. J Therm Anal Calorim 73:797–805

    CAS  Google Scholar 

  • Bujdak J, Slosiarikove H, Texler N, Schwendinger MG, Rode BM (1994) On the possible role of montmorillonite in prebiotic peptide formation. Monatsh Chem 125:1033–1039

    CAS  Google Scholar 

  • Bujdak J, Faybikova K, Eder AH, Yongyai Y, Rode BM (1995) Peptide chain elongation: a possible role of montmorillonite in prebiotic synthesis of protein precursors. Orig Life Evol Biosph 25:431–441

    PubMed  CAS  Google Scholar 

  • Butlerow AM (1861) Formation synthetique d’une substance sucree. C R Acad Sci 53:145–147

    Google Scholar 

  • Carny O, Gazit E (2005) A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J 19:1051–1055

    PubMed  CAS  Google Scholar 

  • Chung N, Lohrmann R, Orgel LE, Rabinowitz J (1971) The mechanism of the trimetaphosphate-induced peptide synthesis. Tetrahedron 27:1205–1210

    CAS  Google Scholar 

  • Cleaves HJ, Miller SL (1998) Oceanic protection of prebiotic organic compounds from UV radiation. Proc Natl Acad Sci USA 95:7260–7263

    PubMed  CAS  Google Scholar 

  • Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS Jr (2000) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340

    PubMed  CAS  Google Scholar 

  • Decker P, Schweer H, Pohlmann R (1982) Bioids: X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography-mass spectrometry of n-butoxime trifluoroacetates on OV-225. J Chromatogr A 244:281–291

    CAS  Google Scholar 

  • Delano JW (2001) Redox history of the Earth’s interior since 3900 Ma: implications for prebiotic molecules. Orig Life Evol Biosph 31:311–341

    PubMed  CAS  Google Scholar 

  • Dyson F (1999) Origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Eder AH, Rode BM (1994) Influence of alkali- and alkaline-earth-metal cations on the ‘salt-induced peptide formation’ reaction. J Chem Soc Dalton Trans. doi:10.1039/DT9940001125

  • Eigen M, Schuster P (1977) A principle of natural self-organization. Naturwissenschaften 64:541–565

    PubMed  CAS  Google Scholar 

  • Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124

    PubMed  CAS  Google Scholar 

  • Ferris JP (1999) Prebiotic synthesis on minerals: bridging the prebiotic and RNA worlds. Biol Bull 196:311–314

    PubMed  CAS  Google Scholar 

  • Ferris JP, Hagan WJ Jr (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40:1093–1120

    PubMed  CAS  Google Scholar 

  • Ferris JP, Orgel LE (1965) Aminomalononitrile and 4-amino-5-cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. J Am Chem Soc 87:4976–4977

    PubMed  CAS  Google Scholar 

  • Ferris JP, Orgel LE (1966) An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J Am Chem Soc 88:1074–1074

    CAS  Google Scholar 

  • Ferris JP, Donner DB, Lotz W (1972) The mechanism of the oligomerization of hydrogen cyanide and its possible role in the origins of life. J Am Chem Soc 94:6968–6974

    PubMed  CAS  Google Scholar 

  • Fitz D, Reiner H, Plankensteiner K, Rode BM (2007) Possible origins of biohomochirality. Curr Chem Biol 1:41–52

    CAS  Google Scholar 

  • Fitz D, Jakschitz T, Rode BM (2008) The catalytic effect of L- and D-histidine on alanine and lysine peptide formation. J Inorg Biochem 102:2097–2102

    PubMed  CAS  Google Scholar 

  • Flores JJ, Bonner WA (1974) On the asymmetric polymerization of aspartic acid enantiomers by kaolin. J Mol Evol 3:49–56

    PubMed  CAS  Google Scholar 

  • Flores JJ, Leckie JO (1973) Peptide formation mediated by cyanate. Nature 244:435–437

    PubMed  CAS  Google Scholar 

  • Fox SW, Harada K (1958) Thermal copolymerization of amino acids to a product resembling protein. Science 128:1214–1214

    PubMed  CAS  Google Scholar 

  • Fox SW, Harada K (1960) The thermal copolymerization of amino acids common to protein. J Am Chem Soc 82:3745–3751

    CAS  Google Scholar 

  • Gibson LJ (1993) Did life begin in an RNA world? Origins 20:45–52

    Google Scholar 

  • Harada K, Fox SW (1958) The thermal condensation of glutamic acid and glycine to linear peptides. J Am Chem Soc 80:2694–2697

    CAS  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247

    PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672

    PubMed  CAS  Google Scholar 

  • Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940

    PubMed  CAS  Google Scholar 

  • Imai E, Honda H, Hatori K, Brack A, Matsuno K (1999) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283:831–833

    PubMed  CAS  Google Scholar 

  • Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747

    CAS  Google Scholar 

  • Isaac R, Chmielewski J (2002) Approaching exponential growth with a self-replicating peptide. J Am Chem Soc 124:6808–6809

    Google Scholar 

  • Joyce GF (1989) RNA evolution and the origins of life. Nature 338:217–224

    PubMed  CAS  Google Scholar 

  • Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 84:4398–4402

    PubMed  CAS  Google Scholar 

  • Krishnamurthy RV, Epstein S, Cronin JR, Pizzarello S, Yuen GU (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim Cosmochim Acta 56:4045–4058

    PubMed  CAS  Google Scholar 

  • Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926

    PubMed  CAS  Google Scholar 

  • Kvenvolden KA, Lawless JG, Ponnamperuma C (1971) Nonprotein amino acids in the Murchison meteorite. Proc Natl Acad Sci USA 68:486–490

    PubMed  CAS  Google Scholar 

  • Laerdahl JK, Wesendrup R, Schwerdtfeger P (2000) D- or L-alanine: that is the question. Chemphyschem 1:60–62

    CAS  Google Scholar 

  • Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201:67–69

    PubMed  CAS  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    PubMed  CAS  Google Scholar 

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160

    PubMed  CAS  Google Scholar 

  • Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85:793–798

    PubMed  CAS  Google Scholar 

  • Lee TD, Yang CN (1956) Question of parity conservation in weak interactions. Phys Rev 104:254–258

    CAS  Google Scholar 

  • Lee DE, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) A self-replicating peptide. Nature 382:525–528

    PubMed  CAS  Google Scholar 

  • Levine J, Augustsson T, Natarajan M (1982) The prebiological paleoatmosphere: stability and composition. Orig Life Evol Biosph 12:245–259

    CAS  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci USA 95:7933–7938

    PubMed  CAS  Google Scholar 

  • Levy M, Miller SL, Oro J (1999) Production of guanine from NH4CN polymerizations. J Mol Evol 49:165–168

    PubMed  CAS  Google Scholar 

  • Li F, Fitz D, Fraser DG, Rode BM (2008) Methionine peptide formation under primordial earth conditions. J Inorg Biochem 102:1212–1217

    PubMed  CAS  Google Scholar 

  • Li F, Fitz D, Fraser DG, Rode BM (2010) Catalytic effects of histidine enationmers and glycine on the formation of dileucine and dimethionine in the salt-induced peptide formation reaction. Amino Acids 38:287–294

    PubMed  CAS  Google Scholar 

  • Limtrakul JP, Rode BM (1985) Solvent structures around sodium and chloride ions in water. Monatsh Chem 116:1377–1383

    CAS  Google Scholar 

  • Limtrakul JP, Fujiwara S, Rode BM (1985) A quantum chemical analysis of the structural entities in aqueous sodium chloride solution and their concentration dependence. Anal Sci 1:29–32

    CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    PubMed  CAS  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 77:2351–2361

    CAS  Google Scholar 

  • Milner-White EJ, Russell MJ (2008) Predicting the conformations of peptides and proteins in early evolution. Biol Direct 3:3

    PubMed  Google Scholar 

  • Mizuno T, Weiss AH (1974) Synthesis and utilization of formose sugars. Adv Carbohydr Chem Biochem 29:173–227

    CAS  Google Scholar 

  • Niesert U, Harnasch D, Bresch C (1981) Origin of life between Scylla and Charybdis. J Mol Evol 17:348–353

    PubMed  CAS  Google Scholar 

  • Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq Gneiss Complex of southern West Greenland; The world’s most extensive record of early crustal evolution (3900–3600 Ma). Precambrian Res 78:1–39

    CAS  Google Scholar 

  • Ochiai E (1978) The evolution of the environment and its influence on the evolution of life. Orig Life 9:81–91

    PubMed  CAS  Google Scholar 

  • Ochiai E (1983) Copper and the biological evolution. BioSystems 16:81–86

    PubMed  CAS  Google Scholar 

  • Ohara S, Cody GD (2010) Surface catalyzed peptide formation on sulfide minerals. Astrobiology Science Conference 2010. http://www.lpi.usra.edu/meetings/abscicon2010/pdf/5309.pdf. Accessed 30 September 2010

  • Oro J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Commun 2:407–412

    Google Scholar 

  • Oro J (1961a) Comets and the formation of biochemical compounds on the primitive earth. Nature 190:389–390

    Google Scholar 

  • Oro J (1961b) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194

    PubMed  CAS  Google Scholar 

  • Oro J, Kimball AP (1961) Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch Biochem Biophys 94:217–227

    PubMed  CAS  Google Scholar 

  • Oro J, Kimball AP (1962) Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen cyanide. Arch Biochem Biophys 96:293–313

    PubMed  CAS  Google Scholar 

  • Pizzarello S, Huang Y, Fuller M (2004) The carbon isotopic distribution of Murchison amino acids. Geochim Cosmochim Acta 68:4963–4969

    CAS  Google Scholar 

  • Plankensteiner K, Righi A, Rode BM (2002) Glycine and diglycine as possible catalytic factors in the prebiotic evolution of peptides. Orig Life Evol Biosph 32:225–236

    PubMed  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Schranz B, Rode BM (2004a) Prebiotic formation of amino acids in a neutral atmosphere by electric discharge. Angew Chem Int Ed 43:1886–1888

    CAS  Google Scholar 

  • Plankensteiner K, Righi A, Rode BM, Gargallo R, Jaumot J, Tauler R (2004b) Indications towards a stereoselectivity of the salt-induced peptide formation reaction. Inorg Chim Acta 357:649–656

    CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode BM (2005a) Catalytically increased prebiotic peptide formation: ditryptophan, dilysine, and diserine. Orig Life Evol Biosph 35:411–419

    PubMed  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode BM (2005b) Stereoselective differentiation in the salt-induced peptide formation reaction and its relevance for the origin of life. Peptides 26:535–541

    PubMed  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode BM (2005c) Catalytic effects of glycine on prebiotic divaline and diproline formation. Peptides 26:1109–1112

    PubMed  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode BM (2006) Amino acids on the rampant primordial earth: electric discharges and the hot salty ocean. Mol Divers 10:3–7

    PubMed  CAS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    PubMed  CAS  Google Scholar 

  • Quigley MN, Vernon F (1996) Determination of trace metal ion concentrations in seawater. J Chem Educ 73:671–675

    CAS  Google Scholar 

  • Reiner H, Plankensteiner K, Fitz D, Rode BM (2006) The possible influence of L-histidine on the origin of the first peptides on the primordial earth. Chem Biodivers 3:611–621

    PubMed  CAS  Google Scholar 

  • Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786

    PubMed  CAS  Google Scholar 

  • Rode BM, Schwendinger MG (1990) Copper-catalyzed amino acid condensation in water – a simple possible way of prebiotic peptide formation. Orig Life Evol Biosph 20:401–410

    CAS  Google Scholar 

  • Rode BM, Eder AH, Yongyai Y (1997) Amino acid sequence preferences of the salt-induced peptide formation reaction in comparison to archaic cell protein composition. Inorg Chim Acta 254:309–314

    CAS  Google Scholar 

  • Rode BM, Flader W, Sotriffer C, Righi A (1999a) Are prions a relic of an early stage of peptide evolution? Peptides 20:1513–1516

    PubMed  CAS  Google Scholar 

  • Rode BM, Son HL, Suwannachot Y, Bujdak J (1999b) The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions. Orig Life Evol Biosph 29:273–286

    PubMed  CAS  Google Scholar 

  • Saetia S, Liedl KR, Eder AH, Rode BM (1993) Evaporation cycle experiments – a simulation of salt-induced peptide synthesis under possible prebiotic conditions. Orig Life Evol Biosph 23:167–176

    PubMed  CAS  Google Scholar 

  • Santoso S, Hwang W, Hartman H, Zhang S (2002) Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett 2:687–691

    CAS  Google Scholar 

  • Sawai H, Orgel LE (1975) Prebiotic peptide-formation in the solid state. J Mol Evol 6:185–197

    PubMed  CAS  Google Scholar 

  • Sawai H, Lohrmann R, Orgel LE (1975) Prebiotic peptide-formation in the solid state. II. Reaction of glycine with adenosine 5′-triphosphate and P1, P2-diadenosine-pyrophosphate. J Mol Evol 6:165–184

    PubMed  CAS  Google Scholar 

  • Schwendinger MG, Rode BM (1989) Possible role of copper and sodium chloride in prebiotic evolution of peptides. Anal Sci 5:411–414

    CAS  Google Scholar 

  • Schwendinger MG, Tauler R, Saetia S, Liedl KR, Kroemer RT, Rode BM (1995) Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions. Inorg Chim Acta 228:207–214

    CAS  Google Scholar 

  • Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85

    PubMed  CAS  Google Scholar 

  • Shapiro R (1995) The prebiotic role of adenine: a critical analysis. Orig Life Evol Biosph 25:83–98

    PubMed  CAS  Google Scholar 

  • Sleep NH (2010) The Hadean-Archaean environment. Cold Spring Harb Perspect Biol 2:a002527

    PubMed  Google Scholar 

  • Son HL, Suwannachot Y, Bujdak J, Rode BM (1998) Salt-induced peptide formation from amino acids in the presence of clays and related catalysts. Inorg Chim Acta 272:89–94

    CAS  Google Scholar 

  • Spitzer J, Poolman B (2009) The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life’s emergence. Microbiol Mol Biol Rev 73:371–388

    PubMed  CAS  Google Scholar 

  • Steinman G, Cole MN (1967) Synthesis of biologically pertinent peptides under possible primordial conditions. Proc Natl Acad Sci USA 58:735–742

    PubMed  CAS  Google Scholar 

  • Steinman G, Lemmon RM, Calvin M (1964) Cyanamide: a possible key compound in chemical evolution. Proc Natl Acad Sci USA 52:27–30

    PubMed  CAS  Google Scholar 

  • Suwannachot Y, Rode BM (1998) Catalysis of dialanine formation by glycine in the salt-induced peptide formation reaction. Orig Life Evol Biosph 28:79–90

    PubMed  CAS  Google Scholar 

  • Texler NR, Holdway S, Neilson GW, Rode BM (1998) Monte Carlo simulations and neutron diffraction studies of the peptide forming system 0.5 mol kg−1 CuCl2-5 mol kg−1 NaCl-H2O at 293 and 353 K. J Chem Soc. Faraday Trans 94:59–65

    CAS  Google Scholar 

  • Tranter GE (1985) The parity violating energy differences between the enantiomers of α-amino acids. Mol Phys 56:825–838

    CAS  Google Scholar 

  • Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 99:5355–5360

    PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204

    CAS  Google Scholar 

  • Wächtershäuser G (2000) Origin of life. Life as we don’t know it. Science 289:1307–1308

    Google Scholar 

  • Weber LA, Caroon JM, Warden JT, Lemmon RM, Calvin M (1977) Simultaneous peptide and oligonucleotide formation in mixtures of amino acid, nucleoside triphosphate, imidazole, and magnesium ion. Biosystems 8:277–286

    PubMed  CAS  Google Scholar 

  • Wesendrup R, Laerdahl JK, Compton RN, Schwerdtfeger P (2003) Biomolecular homochirality and electroweak interactions. I. The Yamagata hypothesis. J Phys Chem A 107:6668–6673

    CAS  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    PubMed  CAS  Google Scholar 

  • Wu CS, Ambler E, Hayward R, Hoppes D, Hudson RP (1957) Experimental test of parity conservation in beta decay. Phys Rev 105:1413–1415

    CAS  Google Scholar 

  • Yao S, Ghosh I, Zutshi R, Chmielewski J (1998) Selective amplification by auto- and cross-catalysis in a replicating peptide system. Nature 396:447–450

    PubMed  CAS  Google Scholar 

  • Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 90:3334–3338

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd M. Rode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fitz, D., Jakschitz, T., Rode, B.M. (2011). Salt-Induced Peptide Formation in Chemical Evolution: Building Blocks Before RNA – Potential of Peptide Splicing Reactions. In: Egel, R., Lankenau, DH., Mulkidjanian, A. (eds) Origins of Life: The Primal Self-Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21625-1_5

Download citation

Publish with us

Policies and ethics