Skip to main content

Detection of Multiple Preceding Cars in Busy Traffic Using Taillights

  • Conference paper
Image Analysis and Recognition (ICIAR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6754))

Included in the following conference series:

Abstract

This paper presents an improved method for detecting and segmenting taillight pairs of multiple preceding cars in busy traffic in day as well as night. Novelties and advantages of this method are that it is designed to detect multiple car simultaneously, it does not require knowledge of lanes, it works in busy traffic in daylight as well as night, and it is fast irrespective of number of preceding vehicles in the scene, and therefore suitable for real-time applications. The time to process the scene is independent of the size of the vehicle in pixels, and the number of preceding cars detected.

One of the previous night taillight detection methods in literature is modified to detect taillight pairs in the scene for both day and night conditions. This paper further introduces a novel hypothesis verification method based on the mathematical relationship between the vehicle distance from the vanishing point and the location of and distance between its taillights. This method enables the detection of multiple preceding vehicles in multiple lanes in a busy traffic environment in real-time. The results are compared with state-of-the-art algorithms for preceding vehicle detection performance, time and ease of implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, D.-Y., Lin, Y.-H.: Frequency-tuned nighttime brake-light detection. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 619–622 (2010)

    Google Scholar 

  2. Crisman, J.D., Thorpe, C.E.: Color vision for road following. In: Thorpe, C. (ed.) Vision and Navigation: The CMU Navlab, pp. 9–24 (1988)

    Google Scholar 

  3. Du, Y., Papanikolopoulos, N.P.: Real-time vehicle following through a novel symmetry-based approach. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3160–3165 (April 1997)

    Google Scholar 

  4. Fu, C.-M., Huang, C.-L., Chen, Y.-S.: Vision-based preceding vehicle detection and tracking. In: Proceedings of the 18th International Conference on Pattern Recognition, vol. 2, pp. 1070–1073 (September 2006)

    Google Scholar 

  5. Gupta, R.A., Snyder, W.E., Pitts, W.S.: Concurrent visual multiple lane detection for autonomous vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation (May 2010)

    Google Scholar 

  6. Ito, T., Yamada, K.: Preceding vehicle and road lanes recognition methods for rcas using vision system. In: Proceedings of the Intelligent Vehicles Symposium, October 24-26, pp. 85–90 (1994)

    Google Scholar 

  7. Jiangwei, C., Lisheng, J., Lie, G., Libibing, Rongben, W.: Study on method of detecting preceding vehicle based on monocular camera. In: IEEE Intelligent Vehicles Symposium, June 14-17, pp. 750–755 (2004)

    Google Scholar 

  8. Kuehni, R.G.: Color Space and Its Divisions: Color Order from Antiquity to the present. Wiley, New York (2003)

    Book  Google Scholar 

  9. O’Malley, R., Glavin, M., Jones, E.: Vehicle detection at night based on tail-light detection. In: 1st International Symposium on Vehicular Computing Systems (July 2008)

    Google Scholar 

  10. Snyder, W.E., Savage, C.D.: Content-addressable read/write memories for image analysis. IEEE Transactions on Computers C-31(10), 963–968 (1982)

    Article  Google Scholar 

  11. Sukthankar, R.: Raccoon: A real-time autonomous car chaser operating optimally at night. In: Proceedings of IEEE Intelligent Vehicles (1993)

    Google Scholar 

  12. Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection using evolutionary gabor filter optimization. IEEE Transactions on Intelligent Transportation Systems 6(2), 125–137 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, R.A., Snyder, W.E. (2011). Detection of Multiple Preceding Cars in Busy Traffic Using Taillights. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21596-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21596-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21595-7

  • Online ISBN: 978-3-642-21596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics