Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition

  • Carlos A. Coello Coello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6718)


This paper provides a brief introduction to the so-called multi-objective evolutionary algorithms, which are bio-inspired metaheuristics designed to deal with problems having two or more (normally conflicting) objectives. First, we provide some basic concepts related to multi-objective optimization and a brief review of approaches available in the specialized literature. Then, we provide a short review of applications of multi-objective evolutionary algorithms in pattern recognition. In the final part of the paper, we provide some possible paths for future research in this area, which are promising, from the author’s perspective.


Particle Swarm Optimization Pareto Front Multiobjective Optimization Multiobjective Optimization Problem Nondominated Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)zbMATHGoogle Scholar
  2. 2.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)CrossRefGoogle Scholar
  3. 3.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007), ISBN 978-0-387-33254-3zbMATHGoogle Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)zbMATHGoogle Scholar
  5. 5.
    Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Mahwah (1985)Google Scholar
  6. 6.
    Fogel, D.B.: Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. The Institute of Electrical and Electronic Engineers, New York (1995)Google Scholar
  7. 7.
    Holland, J.H.: Concerning efficient adaptive systems. In: Yovits, M.C., Jacobi, G.T., Goldstein, G.D. (eds.) Self-Organizing Systems, pp. 215–230. Spartan Books, Washington, DC (1962)Google Scholar
  8. 8.
    Schwefel, H.P.: Kybernetische evolution als strategie der experimentellen forschung in der strömungstechnik. Dipl.-Ing. thesis (1965) (in German) Google Scholar
  9. 9.
    Fogel, L.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)zbMATHGoogle Scholar
  10. 10.
    Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99–107 (1992)CrossRefGoogle Scholar
  11. 11.
    Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)CrossRefGoogle Scholar
  12. 12.
    Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign, San Mateo,California, pp. 416–423. Morgan Kauffman Publishers, San Francisco (1993)Google Scholar
  13. 13.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Goldberg, D.E., Richardson, J.: Genetic algorithm with sharing for multimodal function optimization. In: Grefenstette, J.J. (ed.) Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum, Hillsdale (1987)Google Scholar
  15. 15.
    Deb, K., Goldberg, D.E.: An Investigation of Niche and Species Formation in Genetic Function Optimization. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, George Mason University, San Mateo, California, June 1989, pp. 42–50. Morgan Kaufmann, San Francisco (1989)Google Scholar
  16. 16.
    Toscano Pulido, G., Coello Coello, C.A.: Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 225–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms on Test Functions of Different Difficulty. In: Wu, A.S. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference, Workshop Program, Orlando, Florida, July 1999, pp. 121–122 (1999)Google Scholar
  18. 18.
    Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary Computation 7(2), 100–116 (2003)CrossRefGoogle Scholar
  19. 19.
    Kita, H., Yabumoto, Y., Mori, N., Nishikawa, Y.: Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 504–512. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Cui, X., Li, M., Fang, T.: Study of Population Diversity of Multiobjective Evolutionary Algorithm Based on Immune and Entropy Principles. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC 2001), May 2001, vol. 2, pp. 1316–1321. IEEE Service Center, Piscataway (2001)Google Scholar
  21. 21.
    Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
  22. 22.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001 Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2001)Google Scholar
  23. 23.
    Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)CrossRefGoogle Scholar
  24. 24.
    Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. Evolutionary Computation 13(4), 501–525 (2005)CrossRefGoogle Scholar
  25. 25.
    Toscano Pulido, G., Coello Coello, C.A.: The micro genetic algorithm 2: Towards online adaptation in evolutionary multiobjective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 252–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Knowles, J.: ParEGO: A Hybrid Algorithm With On-Line Landscape Approximation for Expensive Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation 10(1), 50–66 (2006)CrossRefGoogle Scholar
  27. 27.
    Chin-Wei, B., Rajeswari, M.: Multiobjective Optimization Approaches in Image Segmentation–The Directions and Challenges. In: International on Advances in Soft Computing and its Applications, March 2010, vol. 2(1), pp. 40–65 (2010)Google Scholar
  28. 28.
    Bhanu, B., Lee, S.: Genetic Learning for Adaptive Image Segmentation. Kluwer Academic Publishers, Boston (1994)CrossRefzbMATHGoogle Scholar
  29. 29.
    Shirakawa, S., Nagao, T.: Evolutionary Image Segmentation Based on Multiobjective Clustering. In: 2009 IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, May 2009, pp. 2466–2473. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar
  30. 30.
    Hamdani, T.M., Won, J.-M., Alimi, M.A.M., Karray, F.: Multi-objective feature selection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240–247. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  32. 32.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  33. 33.
    Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.: Unsupervised Feature Selection Using Multi-Objective Genetic Algorithm for Handwritten Word Recognition. In: Proceedings of the 7th International Conference on Document Analysis and Recognition (ICDAR 2003), Edinburgh, Scotland, August 2003, pp. 666–670 (2003)Google Scholar
  34. 34.
    Emmanouilidis, C., Hunter, A., MacIntyre, J.: A Multiobjective Evolutionary Setting for Feature Selection and a Commonality-Based Crossover Operator. In: 2000 Congress on Evolutionary Computation, July 2000, vol. 1, pp. 309–316. IEEE Computer Society Press, Piscataway (2000)Google Scholar
  35. 35.
    Zaliz, R.R., Zwir, I., Ruspini, E.: Generalized Analysis of Promoters: A Method for DNA Sequence Description. In: Coello Coello, C.A., Lamont, G.B. (eds.) Applications of Multi-Objective Evolutionary Algorithms, pp. 427–449. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  36. 36.
    de la Iglesia, B., Reynolds, A., Rayward-Smith, V.J.: Developments on a multi-objective metaheuristic (MOMH) algorithm for finding interesting sets of classification rules. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 826–840. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    de la Iglesia, B., Richards, G., Philpott, M., Rayward-Smith, V.: The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification. European Journal of Operational Research 169, 898–917 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Bandyopadhyay, S., Pal, S.K., Aruna, B.: Multiobjective GAs, Quantitative Indices, and Pattern Classification. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 34(5), 2088–2099 (2004)CrossRefGoogle Scholar
  39. 39.
    Guo, P.F., Bhattacharya, P., Kharma, N.: An Efficient Image Pattern Recognition System Using an Evolutionary Search Strategy. In: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, October 2009. IEEE Press, San Antonio (2009)Google Scholar
  40. 40.
    Koza, J.R.: Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  41. 41.
    Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing 9(1), 3–12 (2005)CrossRefGoogle Scholar
  42. 42.
    López Jaimes, A., Coello Coello, C.A.: Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization. In: Lewis, A., Mostaghim, S., Randall, M. (eds.) Biologically-Inspired Optimisation Methods, pp. 23–49. Springer, Heidelberg (2009), ISBN 978-3-642-01261-7 CrossRefGoogle Scholar
  43. 43.
    Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing Surrogate-Assisted Evolutionary Computation. IEEE Transactions on Evolutionary Computation 14(3), 329–355 (2010)CrossRefGoogle Scholar
  44. 44.
    Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill, London (1999)Google Scholar
  45. 45.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, California (2001)Google Scholar
  46. 46.
    Chander, A., Chatterjee, A., Siarry, P.: A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Systems with Applications 38(5), 4998–5004 (2011)CrossRefGoogle Scholar
  47. 47.
    Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer, Berlin (1999)zbMATHGoogle Scholar
  48. 48.
    Nunes de Castro, L., Timmis, J.: An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradigm. Springer, London (2002)zbMATHGoogle Scholar
  49. 49.
    Wang, W., Gao, S., Tang, Z.: Improved pattern recognition with complex artificial immune system. Soft Computing 13(12), 1209–1217 (2009)CrossRefzbMATHGoogle Scholar
  50. 50.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004), ISBN 0-262-04219-3zbMATHGoogle Scholar
  51. 51.
    Tambouratzis, G.: Using an Ant Colony Metaheuristic to Optimize Automatic Word Segmentation for Ancient Greek. IEEE Transactions on Evolutionary Computation 13(4), 742–753 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos A. Coello Coello
    • 1
  1. 1.Departamento de ComputaciónCINVESTAV (Evolutionary Computation Group)México, D.F.Mexico

Personalised recommendations