Advertisement

Foveated ROI Compression with Hierarchical Trees for Real-Time Video Transmission

  • J. C. Galan-Hernandez
  • V. Alarcon-Aquino
  • O. Starostenko
  • J. M. Ramirez-Cortes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6718)

Abstract

Region of interest (ROI) based compression can be applied to real-time video transmission in medical or surveillance applications where certain areas are needed to retain better quality than the rest of the image. The use of a fovea combined with ROI for image compression can help to improve the perception of quality and preserve different levels of detail around the ROI. In this paper, a fovea-ROI compression approach is proposed based on the Set Partitioning In Hierarchical Tree (SPIHT) algorithm. Simulation results show that the proposed approach presents better details in objects inside the defined ROI than the standard SPIHT algorithm.

Keywords

Compression Fovea ROI SPIHT Wavelet Transforms 

References

  1. 1.
    Chang, E.C., Yap, C.K.: Wavelet Approach to Foveating Images. In: Proceedings of the thirteenth annual symposium on Computational geometry - SCG 1997, pp. 397–399 (1997)Google Scholar
  2. 2.
    Cuhadar, A., Tasdoken, S.: Multiple arbitrary shape ROI coding with zerotree based wavelet coders. In: Proceedings of the IEEE International Conference on Multimedia and Expo, ICME 2003, pp. 157–160. IEEE, Los Alamitos (2003)Google Scholar
  3. 3.
    Galan-Hernandez, J.C., Alarcon-Aquino, V., Starostenko, O., Ramirez-Cortes, J.M.: DWT Foveation-Based Multiresolution Compression Algorithm. Research in Computing Science, 197–206 (2010)Google Scholar
  4. 4.
    Park, K.-H., Park, H.W.: Region-of-interest coding based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 12(2), 106–113 (2002)CrossRefGoogle Scholar
  5. 5.
    Bovik, A.: The Essential Guide to Video Processing. Academic Press, London (2009)Google Scholar
  6. 6.
    Hanzo, L., Cherriman, P.J., Streit, J.: Video Compression and Communications. John Wiley & Sons, Ltd, Chichester (2007)CrossRefGoogle Scholar
  7. 7.
    Girod, B., Aaron, A., Rane, S., Rebollo-Monedero, D.: Distributed Video Coding. Proceedings of the IEEE 93, 71–83 (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    Martinez, J.L., Weerakkody, W.A.R.J., Fernando, W.A.C., Fernandez-Escribano, G., Kalva, H., Garrido, A.: Distributed Video Coding using Turbo Trellis Coded Modulation. The Visual Computer 25(1), 69–82 (2008)CrossRefGoogle Scholar
  9. 9.
    Silverstein, L.D.: Foundations of Vision. Color Research & Application 21, 142–144 (2008)CrossRefGoogle Scholar
  10. 10.
    Ciocoiu, I.B.: ECG signal compression using 2D wavelet foveation. In: Proceedings of the 2009 International Conference on Hybrid Information Technology - ICHIT 2009, vol. 13, pp. 576–580 (2009)Google Scholar
  11. 11.
    Bovik, A.C.: Fast algorithms for foveated video processing. IEEE Transactions on Circuits and Systems for Video Technology 13(2), 149–162 (2003)CrossRefGoogle Scholar
  12. 12.
    Galan-Hernandez, J.C., Alarcon-Aquino, V., Starostenko, O., Ramirez-Cortes, J.M.: Wavelet-Based Foveated Compression Algorithm for Real-Time Video Processing. In: Robotics and Automotive Mechanics Conference 2010 IEEE Electronics, september 2010, pp. 405–410. IEEE, Los Alamitos (2010)CrossRefGoogle Scholar
  13. 13.
    Said, A., Pearlman, W.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 6(3), 243–250 (1996)CrossRefGoogle Scholar
  14. 14.
    Tsai, P.: Tree Structure Based Data Hiding for Progressive Transmission Images A Review of Related Works. Fundamenta Informaticae 98, 257–275 (2010)MathSciNetGoogle Scholar
  15. 15.
    Shapiro, J.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing 41, 3445–3462 (1993)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sweldens, W.: The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Applied and Computational Harmonic Analysis 3, 186–200 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mallat, S.: A Wavelet Tour of Signal Processing:The Sparse Way, 3rd edn. Academic Press, London (2008)Google Scholar
  18. 18.
    Acharya, T., Tsai, P.S.: JPEG2000 Standard for Image Compression. John Wiley & Sons, Inc., Hoboken (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. C. Galan-Hernandez
    • 1
  • V. Alarcon-Aquino
    • 1
  • O. Starostenko
    • 1
  • J. M. Ramirez-Cortes
    • 2
  1. 1.Department of Computing, Electronics, and MechatronicsUniversidad de las Americas PueblaPueblaMexico
  2. 2.Department of ElectronicsInstituto Nacional de Astrofisica, Optica y ElectronicaPueblaMexico

Personalised recommendations