Measuring Rectangularity Using GR-signature

  • Jihen Hentati
  • Mohamed Naouai
  • Atef Hamouda
  • Christiane Weber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6718)


Object recognition often operates by making decisions based on the values of several shape properties measured from an image of the object. In this paper, we propose a new exploitation of the Radon Transform using the gradient measurement to generate a new signature (GR-signature) which provides global information of a binary shape regardless its form. We also develop a new method for measuring the rectangularity based on GR-signature. This original approach looks very promising and has several useful properties that keep fundamental geometrical transformations like scale, rotation and translation.


Rectangularity Shape descriptor Radon Transform gradient measurement 


  1. 1.
    Ballard, D.H., Brown, C.M.: Computer Vision. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  2. 2.
    Morse, B.S.: Lecture 9: Shape Description (Regions). Brigham Young University (1998–2000)Google Scholar
  3. 3.
    Campbell, L., MacKinlay: The Econometrics of Financial Markets. Princeton University Press, NJ (1996)zbMATHGoogle Scholar
  4. 4.
    Deans, S.R.: Applications of the Radon Transform. Wiley Inter-science Publications, New York (1983)zbMATHGoogle Scholar
  5. 5.
    Girardeau-Montaut Daniel, application de la transformé de Radon à l’identification de symboles graphiques, DEA de Institut National Polytechnique de Lorraine (2002). Google Scholar
  6. 6.
    Sun, J., Sun, J., Xu, Z., Shum, H.-Y.: Image Super-Resolution using Gradient Profile Prior. In: IEEE Conference on Computer Vision and Pattern Recognition, Xi’an Jiaotong University, Microsoft Research Asia Beijing, P. R. China (2008)Google Scholar
  7. 7.
    Kendall, D.G.: Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces. Bulletin of the London Mathematical Society (1984)Google Scholar
  8. 8.
    Rosin, P.: Measuring rectangularity. Machine Vision and Applications 11, 191–196 (1999)CrossRefGoogle Scholar
  9. 9.
    Radon, J.: Ufiber die Bestimmung von Funktionen durch ihre Integral-werte langs gewisser Mannigfaltigkeiten, Berichte Sa‹chsische Akademie der Wissenschaften, Leipzig. Math.-Phys. Kl. 69, 262–267 (1917)Google Scholar
  10. 10.
    Schey, H.M.: Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, 3rd edn. W. W. Norton, New York (1997)zbMATHGoogle Scholar
  11. 11.
    Tabbone, Ramos Terrades, O., Barrat, S.: Histogram of Radon Transform. In: A useful descriptor for shape retrieval of 19th International Conference on Pattern Recognition - ICPR, S University of Nancy, LORIA (2008)Google Scholar
  12. 12.
    Tabbone, S., Wendling, L., Girardeau-Montaut, D.: Mesures de rectangularité et d’ellipicité à partir de la transformée de Radon. C.I.F.E.D. Hammamet, Tunisie (2002)Google Scholar
  13. 13.
    Jia-wen, W., Yang-jun, L.: MATLAB 7.0 Image Processing, pp. 190–191. National Defence Industry Publishing, Beijing (2006)Google Scholar
  14. 14.
    Naouai, M., Hamouda, A., Weber, C., Melki, N.: linear structure recognition based on image vectorization. In: International Conference on Imaging Theory and Applications, Algarve, Portugal, March 5-7 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jihen Hentati
    • 1
  • Mohamed Naouai
    • 1
    • 2
  • Atef Hamouda
    • 1
  • Christiane Weber
    • 2
  1. 1.Faculty of Science of TunisUniversity campus el Manar DSITunis BelvédaireTunisia
  2. 2.Laboratory Image and Ville UMR7011CNRS-University StrasbourgStrasbourgFrance

Personalised recommendations