Skip to main content

A Compact and Efficient SAT-Encoding of Finite Domain CSP

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2011 (SAT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6695))

Abstract

A (finite) Constraint Satisfaction Problem (CSP) is a combinatorial problem to find an assignment which satisfies all given constraints over finite domains. A SAT-based CSP solver is a program which solves a CSP by encoding it to SAT and searching solutions by SAT solvers. Remarkable improvements in the efficiency of SAT solvers make SAT-based CSP solvers applicable for solving hard and practical problems. A number of SAT encoding methods have been therefore proposed: direct encoding, support encoding, log encoding, log-support encoding, and order encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gelder, A.V.: Another look at graph coloring via propositional satisfiability. Discrete Applied Mathematics 156(2), 230–243 (2008)

    Article  MATH  Google Scholar 

  2. Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the 3rd International CSP Solver Competition. pp. 31–39 (2008)

    Google Scholar 

  3. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems. In: Proceedings of the IFIP 13th World Computer Congress, pp. 253–258 (1994)

    Google Scholar 

  4. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. Constraints 14(2), 254–272 (2009)

    Article  MATH  Google Scholar 

  5. The choco team: choco: an open source Java constraint programming library. In: Proceedings of the 3rd International CSP Solver Competition, pp. 7–13 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tanjo, T., Tamura, N., Banbara, M. (2011). A Compact and Efficient SAT-Encoding of Finite Domain CSP. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21581-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21580-3

  • Online ISBN: 978-3-642-21581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics