Skip to main content

Parameterized Complexity of DPLL Search Procedures

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2011 (SAT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6695))

Abstract

We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game which models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires n Ω(k) steps for a non-trivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked in [11] of understanding the Resolution complexity of this family of formulas.

Nominated as Best Paper candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable. SIAM Journal on Computing 38(4), 1347–1363 (2008)

    Article  MATH  Google Scholar 

  2. Amano, K.: Subgraph isomorphism on AC0 circuits. Computational Complexity 19(2), 183–210 (2010)

    Article  MATH  Google Scholar 

  3. Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of independent sets and vertex covers in random graphs. Comput. Complex. 16(3), 245–297 (2007)

    Article  MATH  Google Scholar 

  4. Beame, P., Karp, R.M., Pitassi, T., Saks, M.E.: The efficiency of resolution and Davis-Putnam procedures. SIAM J. Comput. 31(4), 1048–1075 (2002)

    Article  MATH  Google Scholar 

  5. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004)

    MATH  Google Scholar 

  6. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Proc. 37th IEEE Symposium on the Foundations of Computer Science, pp. 274–282 (1996)

    Google Scholar 

  7. Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Mathematical Society 73(3), 1–26 (1996)

    Article  MATH  Google Scholar 

  8. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM 48(2), 149–169 (2001)

    Article  MATH  Google Scholar 

  9. Beyersdorff, O., Galesi, N., Lauria, M.: Hardness of parameterized resolution. Technical Report TR10-059, Electronic Colloquium on Computational Complexity (2010)

    Google Scholar 

  10. Beyersdorff, O., Galesi, N., Lauria, M.: A lower bound for the pigeonhole principle in tree-like resolution by asymmetric prover-delayer games. Information Processing Letters 110(23), 1074–1077 (2010)

    Article  Google Scholar 

  11. Beyersdorff, O., Galesi, N., Lauria, M., Razborov, A.: Parameterized bounded-depth Frege is not optimal. Technical Report TR10-198, Electronic Colloquium on Computational Complexity (2010)

    Google Scholar 

  12. Blake, A.: Canonical expressions in boolean algebra. PhD thesis, University of Chicago (1937)

    Google Scholar 

  13. Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: On the relative complexity of resolution refinements and cutting planes proof systems. SIAM Journal on Computing 30(5), 1462–1484 (2000)

    Article  MATH  Google Scholar 

  14. Bonet, M.L., Galesi, N.: Optimality of size-width tradeoffs for resolution. Computational Complexity 10(4), 261–276 (2001)

    Article  MATH  Google Scholar 

  15. Chen, Y., Flum, J.: The parameterized complexity of maximality and minimality problems. Annals of Pure and Applied Logic 151(1), 22–61 (2008)

    Article  MATH  Google Scholar 

  16. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4), 759–768 (1988)

    Article  MATH  Google Scholar 

  17. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)

    Article  MATH  Google Scholar 

  18. Dantchev, S.S., Martin, B., Szeider, S.: Parameterized proof complexity. In: Proc. 48th IEEE Symposium on the Foundations of Computer Science, pp. 150–160 (2007)

    Google Scholar 

  19. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MATH  Google Scholar 

  20. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 210–215 (1960)

    Article  MATH  Google Scholar 

  21. Gao, Y.: Data reductions, fixed parameter tractability, and random weighted d-CNF satisfiability. Artificial Intelligence 173(14), 1343–1366 (2009)

    Article  MATH  Google Scholar 

  22. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)

    Article  MATH  Google Scholar 

  23. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  24. Pudlák, P., Impagliazzo, R.: A lower bound for DLL algorithms for SAT. In: Proc. 11th Symposium on Discrete Algorithms, pp. 128–136 (2000)

    Google Scholar 

  25. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)

    Article  MATH  Google Scholar 

  26. Rossman, B.: On the constant-depth complexity of k-clique. In: Proc. 40th ACM Symposium on Theory of Computing, pp. 721–730 (2008)

    Google Scholar 

  27. Rossman, B.: The monotone complexity of k-clique on random graphs. In: Proc. 51th IEEE Symposium on the Foundations of Computer Science, pp. 193–201. IEEE Computer Society, Los Alamitos (2010)

    Google Scholar 

  28. Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing 33(5), 1171–1200 (2004)

    Article  MATH  Google Scholar 

  29. Stalmark, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33, 277–280 (1996)

    Article  Google Scholar 

  30. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beyersdorff, O., Galesi, N., Lauria, M. (2011). Parameterized Complexity of DPLL Search Procedures. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21581-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21580-3

  • Online ISBN: 978-3-642-21581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics