Skip to main content

Grid-Fault Ride-Through Control Method for a Wind Turbine Inverter

  • Chapter
Book cover Smart Power Grids 2011

Part of the book series: Power Systems ((POWSYS))

  • 6534 Accesses

Abstract

The latest grid codes require that wind turbines remain connected to the grid during severe grid disturbances, ensure fast restoration of active power to the pre-fault level and in some cases support reactive power to the grid. It is known that grid side inverters are sensitive to voltage disturbances which results in appearance of low order harmonics in line currents as well as huge ripple on a DC link capacitor. This chapter presents generalized method for grid-fault ride-through control for a wind turbine inverter. An analytical approach shows that a grid side inverter can ride through fault by supplying constant (smooth) power to the grid with adjustable power factor. The proposed control method can be easily integrated into the power-tracking control needed during normal operation. Simulation results are used to validate the proposed control method during severe faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stankovic, A.V., Schreiber, D.: Handbook on renewable energy technology. World Scientific, Singapore (2011)

    Google Scholar 

  2. U.S Department of Energy, 20% Wind energy by, report (2008), http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf

  3. Carrasco, J.M., et al.: Power-electronic systems for the grid integration of re-newable energy source: a survey. IEEE Trans. Ind. Electr. 53(4), 1002–1016 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chinchilla, M., et al.: Control of permanent-magnet generator applied to variable-speed wind-energy systems connected to the grid. IEEE Trans. Energy Conv. 21(1), 130–135 (2006)

    Article  Google Scholar 

  5. Grauers, A.: Efficiency of three wind energy generator systems. IEEE Trans. Energy Conv. 11(3), 650–657 (1996)

    Article  Google Scholar 

  6. Ahmed, T., et al.: Advanced control of a boost AC-DC PWM rectifier for variable-speed induction generator. Appl. Power Electr. Conf. and Expo. 7 (2006)

    Google Scholar 

  7. Jang, J.I., et al.: Active and reactive power control of DFIG for wind energy conversion under unbalanced grid voltage. In: Power Electr. and Motion Control Conf., pp. 1–5 (2006)

    Google Scholar 

  8. Sürgevil, T., Akpınar, E.: Modeling of a 5-kW wind energy conversion system with induction generator and comparison with experimental results. Int. J. of Renew. Energy 30(6), 913–929 (2004)

    Article  Google Scholar 

  9. Schiemenz, I., Stiebler, M.: Control of a permanent magnet synchronous generator used in a variable speed wind energy system. IEEE Inst. of Power Eng. & Autom., 872–877 (2001)

    Google Scholar 

  10. Johnson, G.: Wind energy systems. Prentice-Hall, Englewood Cliffs (1985)

    Google Scholar 

  11. Morimoto, S., et al.: Power maximization control of variable-speed wind generation system using permanent magnet synchronous generator. Electr. Eng. in Japan 150(2), 1573–1579 (2005)

    Google Scholar 

  12. Schreiber, D.: State of the art of variable speed wind turbines. In: 11th Int. Symposium on Power Electr. Novi Sad Yugoslavia (2001)

    Google Scholar 

  13. Muljadi, E.: Understanding the unbalanced-voltage problems in wind turbine generation. In: Proc. of 34th Annual Meet. of the IEEE Ind. Appl., vol. 2, pp. 1359–1365 (1999)

    Google Scholar 

  14. Manuel, J., et al.: Power-electronic systems for the grid integration of renewable energy source: a survey. IEEE Trans. Ind. Electr. 53(4), 1002–1016 (2006)

    Article  MathSciNet  Google Scholar 

  15. Moran, L.: Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions. IEEE Trans. on Ind. Appl. 28(6), 1286–1293 (1992)

    Article  Google Scholar 

  16. Akhmatov, V.: Analyses of dynamic behavior of electric power systems with large amount of wind power. PhD Thesis Orsted DTU (2003)

    Google Scholar 

  17. Brando, G., et al.: Control method of a braking chopper to reduce voltage unbalance in a 3-level chopper, vol. 2, pp. 975–978 (2004)

    Google Scholar 

  18. Hansen, A.D., Michalke, G.: Multi-pole permanent magnet synchronous generator wind turbines’ grid support capability in uninterrupted operation during grid faults. IET Renew. Power Generation 3(3), 333–348 (2009)

    Article  Google Scholar 

  19. Abedini, A., Nasiri, A.: PMSG wind turbine performance analysis during short circuit faults. In: 2007 IEEE Canada Electr. Power Conf., pp. 160–165 (2007)

    Google Scholar 

  20. Zhang, Y., et al.: Inverter control strategy for direct-drive permanent magnet wind generator under unbalance of three-phase source voltage. In: 11th International Conf. on Electr. Mach. and Syst., pp. 2497–2501 (2008)

    Google Scholar 

  21. Lazarov, V., Apostolov, D.: PWM inverter power transfer under unbalanced voltage condition. In: ISEIMA 2006 First Int. Symp. on Environ. Identities and Mediterranean Area, pp. 254–259 (2006)

    Google Scholar 

  22. Song, H.S., Nam, V.: Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans. on Ind. Electr. 46(5), 953–959 (1999)

    Article  Google Scholar 

  23. Ng, C.H., et al.: Unbalanced- grid –fault ride-through control for a wind turbine inverter. IEEE Trans. on Ind. Appl. 44(3), 845 (2008)

    Article  Google Scholar 

  24. Hu, J., He, Y.: Modeling and control of grid-connected voltage-source converters under generalized unbalanced operation conditions. IEEE Trans. on Energy Conv. 23, 903–913 (2008)

    Article  Google Scholar 

  25. Yazdani, A., Iravani, R.: A unified dynamic model and control for the voltage-source converter under unbalanced grid conditions. IEEE Trans. on Power Deliv. 21(3), 1620–1629 (2006)

    Article  Google Scholar 

  26. Suh, Y., et al.: A control method in dq synchronous frame for PWM boost rectifier under generalized unbalance condition. In: 2002 Power Electr. Specialists Conf., vol. 3, pp. 1425–1430 (2002)

    Google Scholar 

  27. Suh, Y., et al.: A nonlinear control of the instantaneous power in dq synchronous frame for PWM ac dc converter under generalized unbalanced operating conditions. In: Proc. of 2002 IEEE Ind. Appl. Conf., vol. 2, pp. 1189–1196 (2002)

    Google Scholar 

  28. Rodriguez, P., et al.: Reactive power control for improving wind turbine system behavior under grid faults. IEEE Trans. on Power Electr. 24(7), 1798–1801 (2009)

    Article  Google Scholar 

  29. Rodriguez, P., et al.: Flexible active power control of distributed power generation systems during grid faults. IEEE Trans. on Ind. Electr. 54, 2583–2592 (2007)

    Article  Google Scholar 

  30. Wang, Q., Chang, L.: PWM control strategies for wind turbine inverters. Wind Eng. 25(1), 33–40 (2001)

    Article  Google Scholar 

  31. Dixon, J.W., Ooi, B.-T.: Indirect Current control of a unity power factor sinusoidal current boost type three-phase rectifier. IEEE Trans. on Ind. Electr. 35, 508–511 (1988)

    Article  Google Scholar 

  32. Stankovic, A.V., Lipo, T.A.: Novel control method for input output harmonic elimination of the PWM boost type rectifiers under unbalanced operating conditions. IEEE Trans. on Power Elect. 16, 603–611 (2001)

    Article  Google Scholar 

  33. Stankovic, A.V., Chen, K.: A new control method for input-output harmoinic elimination of the PWM boost type rectifier under extreme unbalanced operating conditions. IEEE Trans. on Ind. Electr. 56, 2420–2430 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Vladan Stankovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stankovic, A.V., Schreiber, D., Zheng, X. (2012). Grid-Fault Ride-Through Control Method for a Wind Turbine Inverter. In: Keyhani, A., Marwali, M. (eds) Smart Power Grids 2011. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21578-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21578-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21577-3

  • Online ISBN: 978-3-642-21578-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics