Skip to main content

Decentralized STATCOM/ESS Control for Wind Generators

  • Chapter
Smart Power Grids 2011

Part of the book series: Power Systems ((POWSYS))

Abstract

Wind energy has emerged as the fastest growing source of renewable energy and is expected to see continued strong growth in the immediate future. Wind power generation is required to provide a certain reliability of supply and a certain level of stability. Motivated by the above issues, many grid operators have started to introduce new grid-codes which treat wind power generation in a special manner. Most interconnection standards today require wind farms to have the ability to withstand severe faults, usually called the fault ride-through (FRT) capability or, in some cases, the low-voltage ride-through (LVRT) capability.

The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators in large interconnected power systems is presented in this chapter. The low-voltage-ride-through (LVRT) capability is provided by extending range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralized multi-variable controllers for large interconnected power systems using minimax output-feedback control design method and the controller design procedure is formulated as an optimization problem involving rankconstrained linear matrix inequalities (LMIs). In this chapter it is shown that STATCOM with energy storage system (STATCOM/ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.

An Erratum for this chapter can be found at http://dx.doi.org/10.1007/978-3-642-21578-0_22

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-21578-0_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leon, J.A.D.D., Taylor, C.W.: Understanding and solving short term voltage instability. In: Proceedings of the IEEE PES Summer Meeting, pp. 745–752 (2005)

    Google Scholar 

  2. De Alegra, I.M., Andreu, J., Martin, J.L., Ibanez, P., Villate, J.L., Camblong, H.: Connection requirements for wind farms: A survey on technical requirements and regulation. Renewable and Sustainable Energy Reviews 11(8), 1858–1872 (2007)

    Article  Google Scholar 

  3. Salehi, V., Afsharnia, S., Kahrobaee, S.: Improvement of voltage stability in wind farm connection to distribution network using FACTS devices. In: Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics, pp. 4242–4227 (2006)

    Google Scholar 

  4. Suul, J.A., Molinas, M., Undeland, T.: STATCOM-based indirect torque control of induction machines during voltage recovery after grid faults. IEEE Trans. on Power Electronics 25(5), 1240–1250 (2010)

    Article  Google Scholar 

  5. El-Moursi, M.S., Bak-Jensen, B., Abdel-Rahman, M.H.: Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated Wind Park. IEEE Trans. on Power Electronics 25(2), 429–441 (2010)

    Article  Google Scholar 

  6. Rahimi, M., Parniani, M.: Efficient control scheme of wind turbines with doubly fed induction generators for low-voltage ride-through capability enhancement. IET Renewable Power Generation 4(3), 242–252 (2010)

    Article  Google Scholar 

  7. Singh, B., Kasal, G.K.: Voltage and frequency controller for a three-phase four-wire autonomous wind energy conversion system. IEEE Trans. on Energy Conversion 23(2), 509–518 (2008)

    Article  Google Scholar 

  8. Kamwa, I., Grondin, R., Hebert, Y.: Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach. IEEE Trans. on Power Systems 16(1), 136–153 (2001)

    Article  Google Scholar 

  9. Hossain, M.J., Pota, H.R., Kumble, C.: Decentralized robust static synchronous compensator control for wind farms to augment dynamic transfer capability. Journal of Renewable and Sustainable Energy 2(2), 022 701(1)–022 701(20) (2010)

    Google Scholar 

  10. Siljak, D.D., Zecevic, A.I., Neskovic, G.: Robust decentralized ex-citer control with linear feedback. IEEE Trans. on Power Systems 19(2), 1096–1103 (2004)

    Article  Google Scholar 

  11. Guo, Y., Hill, D.J., Wang, Y.: Nonlinear decentralized control of large-scale power systems. Automatica 36(9), 1275–1289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Siljak, D.D., Stipanovic, D.M., Zecevic, A.I.: Robust decentralized turbine/governor control using linear matrix inequalities. IEEE Trans. on Power Systems 17(3), 715–722 (2002)

    Article  Google Scholar 

  13. Siljak, D.D., Zecevic, A.I.: Control of large-scale systems: Beyond decentralized feedback. Annual Reviews in Control 29(2), 169–179 (2005)

    Article  Google Scholar 

  14. Taranto, G.N., Chow, J.H., Othman, H.A.: Robust redesign of power system damping controllers. IEEE Trans. on Control System Technology 3(3), 290–298 (1995)

    Article  Google Scholar 

  15. Hossain, M.J., Pota, H.R., Ugrinovskii, V.A., Ramos, R.A.: Simultaneous STATCOM and pitch angle control for improved LVRT capability of fixed-speed wind turbines. IEEE Trans. on Sustainable Energy 1(3), 142–151 (2010)

    Article  Google Scholar 

  16. Guo, Y., Hill, D.J., Wang, Y.: Global transient stability and voltage regulation for power systems. IEEE Trans. on Power Systems 16(4), 678–688 (2001)

    Article  Google Scholar 

  17. Hossain, M.J., Pota, H.R., Ugrinovskii, V.A., Ramos, R.A.: Excitation control for large disturbances in power systems with dynamic loads. In: Proceedings of the IEEE PES General Meeting, pp. 1–8 (2008)

    Google Scholar 

  18. Hossain, M.J., Pota, H.R., Ugrinovskii, V.A.: Short and long-term dynamic voltage instability. In: Proceedings of the 17th IFAC World Congress, pp. 9392–9397 (2008)

    Google Scholar 

  19. Ackermann, T.: Wind Power in Power Systems. John Wiley and Sons, England (2005)

    Book  Google Scholar 

  20. Abdin, E.S., Xu, W.: Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Trans. on Energy Conversion 15(1), 91–96 (2000)

    Article  Google Scholar 

  21. Nandigam, K., Chowdhury, B.H.: Power flow and stability models for induction generators used in wind turbines. In: Proceedings of the IEEE PES General Meeting, pp. 2012–2016 (2004)

    Google Scholar 

  22. Srithorn, P., Sumner, M., Yao, L., Parashar, R.: A STATCOM with super capacitors for enhanced power system stability. In: Proceedings of the 4th IET Conference on Power Electronics, Machines and Drives, pp. 96–100 (2008)

    Google Scholar 

  23. Heydt G: Power systems test case archive (1999), http://www.ee.washington.edu/research/pstca/ (accessed August 1999)

  24. Fernandez, L., Garcia, C., Saenz, J., Jurado, F.: Equivalent models of wind farms by using aggregated wind turbines and equivalent winds. Energy Conversion and Management 50(3), 691–704 (2009)

    Article  Google Scholar 

  25. Germond, A.J., Podmore, R.: Dynamic aggregation of generating unit models. IEEE Trans. on Power Appa. and Syst. PAS-97(4), 1060–1069 (1978)

    Article  Google Scholar 

  26. Pal, B.C., Coonick, A.H., Macdonald, D.C.: Robust damping controller design in power systems with superconducting magnetic energy storage devices. IEEE Trans. on Power Systems 15(1), 320–325 (2000)

    Article  Google Scholar 

  27. Werner, H., Korba, P., Yang, T.C.: Robust tuning of power system stabilizers using LMI-techniques. IEEE Trans. on Control Systems Technology 11(2), 147–152 (2003)

    Article  Google Scholar 

  28. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Macmillan, New York (1992)

    MATH  Google Scholar 

  29. Petersen, I.R., Ugrinovskii, V.A., Savkin, A.V.: Robust Control Design Using H∞ Methods. Springer, London (2000)

    Book  Google Scholar 

  30. Li, L., Ugrinovskii, V.A., Orsi, R.: Decentralized robust control of uncertain markov jump parameter systems via output feedback. Automatica 43(11), 1932–1944 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, L., Petersen, I.R.: A rank constrained LMI algorithm for the robust H∞ control of an uncertain system via a stable output feedback controller. In: Proceedings of the 46th IEEE Conf. on Decision and Control, pp. 5423–5428 (2007)

    Google Scholar 

  32. Akhmatov, V., Knudsen, H., Bruntt, M., Nielsen, A., Pedersen, J.K., Poulsen, N.K.: A dynamic stability limit of grid-connected induction generator. In: Proceedings of the Int. Conf. on Power and Energy Systems, pp. 235–244 (2000)

    Google Scholar 

  33. Cutsem, T.V., Vournas, C.D.: Voltage Stability of Electric Power System. Knower Academic, Norwell (1998)

    Google Scholar 

  34. Hemeida, A.M.: Improvement of voltage stability and critical clearing time for multimachine power systems using static var compensator. ICGST-ACSE 9(2), 41–47 (2009)

    Google Scholar 

  35. Bary, D.: Increasing renewable accessibility in Ireland. In: Proceedings of the 9th World Energy Congress, pp. 1–10 (2004)

    Google Scholar 

  36. Li, L., Ugrinovskii, V.A.: On necessary and sufficient conditions for H∞ output feedback control of Markov jump linear systems. IEEE Trans. on Automatic Control 52(7), 1287–1292 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hossain, M.J., Pota, H.R., Mahmud, M.A. (2012). Decentralized STATCOM/ESS Control for Wind Generators. In: Keyhani, A., Marwali, M. (eds) Smart Power Grids 2011. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21578-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21578-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21577-3

  • Online ISBN: 978-3-642-21578-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics