Skip to main content

Abstract

Surface reconstruction from a set of noisy point measurements has been a well studied problem for several decades. Recently, variational and discrete optimization approaches have been applied to solve it, demonstrating good robustness to outliers thanks to a global energy minimization scheme. In this work, we use a recent approach embedding several optimization algorithms into a common framework named power watershed. We derive a specific watershed algorithm for surface reconstruction which is fast, robust to markers placement, and produces smooth surfaces. Experiments also show that our proposed algorithm compares favorably in terms of speed, memory requirement and accuracy with existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanford 3D scanning repository, http://graphics.stanford.edu/data/3Dscanrep/

  2. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, SMA 2001, pp. 249–266. ACM, New York (2001)

    Chapter  Google Scholar 

  3. Beucher, S., Gratin, C.: Micromorph reference manual, applications and solutions. Ecole des Mines de Paris (1989)

    Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  5. Braude, I., Marker, J., Museth, K., Nissanov, J., Breen, D.: Contour-based surface reconstruction using mpu implicit models. Graphical Models 69 (2007)

    Google Scholar 

  6. Breen, E., Jones, R.: Attribute openings, thinnings and granulometries. Graphical Models and Image Processing Journal 64(3), 377–389 (1996)

    Google Scholar 

  7. Chazelle, B.: A minimum spanning tree algorithm with inverse-ackermann type complexity. J. ACM 47, 1028–1047 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: ICCV 2009, pp. 731–738 (2009)

    Google Scholar 

  9. Couprie, C., Grady, L., Najman, L., Talbot, H.: Anisotropic Diffusion Using Power Watersheds. In: ICIP 2010, pp. 4153–4156 (2010)

    Google Scholar 

  10. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power Watersheds: A Unifying Graph Based Optimization Framework. IEEE Transactions on Pattern Analysis and Machine Intelligence (to appear, 2011)

    Google Scholar 

  11. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(8), 1362–1374 (2009)

    Article  Google Scholar 

  12. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glowinski, R., Tallec, P.: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  14. Goldstein, T., Osher, S.: The split Bregman method for ℓ1-regularized problems. SIIMS 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: Segmentation and surface reconstruction (2009)

    Google Scholar 

  16. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  17. Hirata, T.: A unified linear-time algorithm for computing distance maps. Information Processing Letters 58(3), 129–133 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26, 71–78 (1992)

    Article  Google Scholar 

  19. Jalba, A.C., Roerdink, J.B.T.M.: Efficient surface reconstruction using generalized coulomb potentials. IEEE Transactions on Visualization and Computer Graphics 13, 1512–1519 (2007)

    Article  Google Scholar 

  20. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  21. Kazhdan, M.M.: Reconstruction of solid models from oriented point sets. In: Symposium on Geometry Processing, pp. 73–82 (2005)

    Google Scholar 

  22. Lempitsky, V.: Surface extraction from binary volumes with higher-order smoothness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  23. Lempitsky, V., Boykov, Y.: Global Optimization for Shape Fitting. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, USA (2007)

    Google Scholar 

  24. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)

    Article  Google Scholar 

  25. Ragnemalm, I.: The euclidean distance transform in arbitrary dimensions 14(11), 883–888 (1993)

    Google Scholar 

  26. Setzer, S.: Split Bregman algorithm, douglas-rachford splitting and frame shrinkage. In: International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2009, pp. 464–476. Springer, Heidelberg (2009)

    Google Scholar 

  27. Strang, G.: Maximum flows through a domain. Math. Prog. (26), 123–143 (1983)

    Article  MATH  Google Scholar 

  28. Ye, J., Bresson, X., Goldstein, T., Osher, S.: A fast variational method for surface reconstruction from sets of scattered points (2010) (submitted)

    Google Scholar 

  29. Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method. Computer Vision and Image Understanding 80, 295–319 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couprie, C., Bresson, X., Najman, L., Talbot, H., Grady, L. (2011). Surface Reconstruction Using Power Watershed. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21569-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21568-1

  • Online ISBN: 978-3-642-21569-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics