Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6671))

Abstract

This article introduces the notion of component-hypertree, which models the component-trees of an image at various connectivity levels, and the relations of the nodes/connected components between these levels. This data structure is then used to extend a recently proposed interactive segmentation method based on component-trees. In this multiscale connectivity context, the use of a component-hypertree appears to be less costly than the use of several component-trees. Application examples illustrate the relevance of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: ICIP, pp. 41–44 (2007)

    Google Scholar 

  2. Braga-Neto, U., Goutsias, J.: A multiscale approach to connectivity. Computer Vision and Image Understanding 89(1), 70–107 (2003)

    Article  MATH  Google Scholar 

  3. Braga-Neto, U., Goutsias, J.: Object-based image analysis using multiscale connectivity. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 892–907 (2005)

    Article  Google Scholar 

  4. Caldairou, B., Naegel, B., Passat, N.: Segmentation of complex images based on component-trees: Methodological tools. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 171–180. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Jones, R.: Connected filtering and segmentation using component trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)

    Article  Google Scholar 

  6. Kiwanuka, F.N., Wilkinson, M.H.F.: Automatic attribute threshold selection for blood vessel enhancement. In: ICPR, pp. 2314–2317 (2010)

    Google Scholar 

  7. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48(3), 357–393 (1989)

    Article  Google Scholar 

  8. Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: ISMM, vol. 1, pp. 239–250. INPE (2007)

    Google Scholar 

  9. Naegel, B., Wendling, L.: Combining shape descriptors and component-tree for recognition of ancient graphical drop caps. In: VISAPP, vol. 2, pp. 297–302 (2009)

    Google Scholar 

  10. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)

    Article  Google Scholar 

  11. Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)

    Article  Google Scholar 

  12. Passat, N., Naegel, B., Rousseau, F., Koob, M., Dietemann, J.L.: Interactive segmentation based on component-trees. Pattern Recognition (in press), doi: 10.1016/j.patcog.2011.03.025

    Google Scholar 

  13. Salembier, P.: Connected operators based on tree pruning strategies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, ch. 7, pp. 179–198. ISTE/J. Wiley & Sons (2010)

    Google Scholar 

  14. Serra, J.: Connectivity on complete lattices. Journal of Mathematical Imaging and Vision 9(3), 231–251 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  16. Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector attribute filters. In: ISMM. Computational Imaging and Vision, vol. 30, pp. 95–104. Springer, Heidelberg (2005)

    Google Scholar 

  17. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 272–285 (2007)

    Article  Google Scholar 

  18. Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and gray-scale shape filters. In: ISMM, pp. 305–314. CSIRO Publishing (2002)

    Google Scholar 

  19. Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Passat, N., Naegel, B. (2011). Component-Hypertrees for Image Segmentation. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21569-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21568-1

  • Online ISBN: 978-3-642-21569-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics