Skip to main content

Detection and Tracking of Multiple Similar Objects Based on Color-Pattern

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6752))

Abstract

In this paper an efficient and applicable approach for tracking multiple similar objects in dynamic environments is proposed. Objects are detected based on a specific color pattern i.e. color label. It is assumed that the number of objects is not fixed and they can be occluded by other objects. Considering the detected objects, an efficient algorithm to solve the multi-frame object correspondence problem is presented. The proposed algorithm is divided into two steps; at the first step, previous mismatched correspondences are corrected using the new information (i.e. new detected objects in new image frame), then all tail objects (i.e. objects which are located at the end of a track) are tried to be matched with unmatched objects (either a new object or a previously mismatched object). Apart from the correspondence algorithm, a probabilistic gain function is used to specify the matching weight between objects in consecutive frames. This gain function benefits Student T distribution function for comparing different object feature vectors. The result of the algorithm on real data shows the efficiency and reliability of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shafique, K., Shah, M.: A noniterative greedy algorithm for multiframe point correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 27, 51–65 (2005)

    Article  Google Scholar 

  2. Dawson, M.R.W.: The How and Why of What Went Where in Apparent Motion: Modeling Solutions to the Motion Correspondence Problem. Psychological Rev. 98, 569–603 (1991)

    Article  Google Scholar 

  3. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  4. Gary, M.R., Johnson, D.S.: Computers and Intractability. Freeman, NewYork (1979)

    Google Scholar 

  5. Deb, S., Yeddanapudi, M., Pattipati, K., Bar-Shalom, Y.: A Generalized S-D Assignment Algorithm for Multisensor-MultitargetState Estimation. IEEE Trans. Aerospace and Electronic Systems 33(2), 523–538 (1997)

    Article  Google Scholar 

  6. Poore, A.B., Yan, X.: Data Association in Multi-Frame Processing. In: Proc. Second Int’l Conf. Information Fusion, pp. 1037–1044 (1999)

    Google Scholar 

  7. Sethi, I.K., Jain, R.: Finding Trajectories of Feature Points in a Monocular Image Sequence. IEEE Trans. Pattern Analysis andMachine Intelligence 9(1), 56–73 (1987)

    Article  Google Scholar 

  8. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4), 45 pages (December 2006), Article 13

    Google Scholar 

  9. Radke, R., Andra, S., Al-Kofahi, O., Roysam, B.: Image Change Detection Algorithms: A Systematic Survey. IEEE Trans. ImageProcessing 14(3), 294–307 (2005)

    Article  MathSciNet  Google Scholar 

  10. Javed, O., Shah, M.: Tracking and object classification for automated surveillance. Journal of Computer Vision 50(2), 103–110 (2002)

    Article  MATH  Google Scholar 

  11. Huang, K., Wang, L., Tan, T., Maybank, S.: A real-time object detecting and tracking system for outdoor night surveillance. Pattern Recognition 41, 432–444 (2008)

    Article  MATH  Google Scholar 

  12. Huang, M.C., Yen, S.H.: A real-time and color-based computer vision for traffic monitoring system. In: IEEE Int. Conf. Multimedia Expo., vol. 3, pp. 2119–2122 (2004)

    Google Scholar 

  13. Tai, J., Tseng, S., Lin, C., Song, K.: Real-time image tracking for automatic traffic monitoring and enforcement applications. Image and Vision Computing 22(6), 485–501 (2004)

    Article  Google Scholar 

  14. Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A real-time computer vision system for vehicle tracking and traffic surveillance. Transportation Research Part C: Emerging Technologies 6, 271–288 (1998)

    Article  Google Scholar 

  15. Weng, S.-K., Kuo, C.-M., Tu, S.-K.: Video object tracking using adaptive Kalman filter. J. Vis. Commun. Image Represent. 17, 1190–1208 (2006)

    Article  Google Scholar 

  16. Behrens, T., Rohr, K., Stiehl, H.S.: Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33, 554–561 (2003)

    Article  Google Scholar 

  17. Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving Motion Correspondence for Densely Moving Points. IEEE Trans. Pattern Analysis and Machine Intelligence 23(1), 54–72 (2001)

    Article  Google Scholar 

  18. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  19. Ullman, S.: The Interpretation of Visual Motion. MIT Press, Cambridge, Mass (1979)

    Google Scholar 

  20. Jenkin, M.R.M.: Tracking Three Dimensional Moving Light Displays. In: Proc., Workshop Motion: Representation Contr., pp. 66–70 (1983)

    Google Scholar 

  21. Barnard, S.T., Thompson, W.B.: Disparity Analysis of Images. IEEE Trans. Pattern Analysis and Machine Intelligence 2(4), 333–340 (1980)

    Article  Google Scholar 

  22. Kuhn, H.: The Hungarian method for solving the assignment problem. Naval Research Logistics Quart. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  23. Rangarajan, K., Shah, M.: Establishing Motion Correspondence. Computer Vision, Graphics, and Image Processing 54(1), 56–73 (1991)

    MATH  Google Scholar 

  24. Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving Motion Correspondence for Densely Moving Points. IEEE Trans. Pattern Analysis and Machine Intelligence 23(1), 54–72 (2001)

    Article  Google Scholar 

  25. Rosales, R., Sclaroff, S.: 3d trajectory recovery for tracking multiple objects and trajectory guidedrecog-nition of actions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 117–123 (1999)

    Google Scholar 

  26. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. Int. J.Comput. Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  27. Rasmussen, C., Hager, G.: Probabilistic data association methods for tracking complex visualobjects. IEEE Trans. Patt. Analy. Mach. Intell. 23(6), 560–576 (2001)

    Article  Google Scholar 

  28. Hue, C., Cadre, J.L., Prez, P.: Sequential montecarlo methods for multiple targettracking anddata fusion. IEEE Trans. Sign. Process. 50(2), 309–325 (2002)

    Article  Google Scholar 

  29. Cox, I.J.: A review of statistical data association techniques for motion correspondence. Int. J. Comput. Vision 10(1), 53–66 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Firouzi, H., Najjaran, H. (2011). Detection and Tracking of Multiple Similar Objects Based on Color-Pattern. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A. (eds) Autonomous and Intelligent Systems. AIS 2011. Lecture Notes in Computer Science(), vol 6752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21538-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21538-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21537-7

  • Online ISBN: 978-3-642-21538-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics