Skip to main content

Face Recognition Based on Kernelized Extreme Learning Machine

  • Conference paper
Autonomous and Intelligent Systems (AIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6752))

Included in the following conference series:

Abstract

The original extreme learning machine (ELM), based on least square solutions, is an efficient learning algorithm used in “generalized” single-hidden layer feedforward networks (SLFNs) which need not be neuron alike. Latest development [1] shows that ELM can be implemented with kernels. Kernlized ELM can be seen as a variant of the conventional LS-SVM without the output bias b. In this paper, the performance comparison of LS-SVM and kernelized ELM is conducted over a benchmarking face recognition dataset. Simulation results show that the kernelized ELM outperforms LS-SVM in terms of both recognition prediction accuracy and training speed.

This research work was sponsored by the grant from Academic Research Fund (AcRF) Tier 1, Ministry of Education, Singapore, under project No. RG22/08(M52040128).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multi-class classification. Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (2010)

    Google Scholar 

  2. Lin, S.-H., Kung, S.-Y., Lin, L.-J.: Face recognition/detection by probabilistic decision-based neural network. IEEE Transactions on Neural Networks 8(1), 114–132 (1997)

    Article  Google Scholar 

  3. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35(4), 399–458 (2003)

    Article  Google Scholar 

  4. Heisele, B., Ho, P., Wu, J., Poggio, T.: Face recognition: component-based versus global approaches. Computer Vision and Image Understanding 91(1-2), 6–21 (2003)

    Article  Google Scholar 

  5. Li, Z., Tang, X.: Using support vector machines to enhance the performance of bayesian face recognition. IEEE Transactions on Information Forensics and Security 2(2), 174–180 (2007)

    Article  MathSciNet  Google Scholar 

  6. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  7. Fukunag, K.: Introduction to statistical pattern recognition. Academic Press, New York (1990)

    Google Scholar 

  8. Zhao, W., Krishnaswamy, A., Chellappa, R.: Discriminant analysis of principal components for face recognition. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, April 14-16, pp. 336–341 (1998)

    Google Scholar 

  9. Zhang, G.-Y., Peng, S.-Y., Li, H.-M.: Combination of dual-tree complex wavelet and svm for face recognition. In: Proceedings of International Conference on Machine Learning and Cybernetics, Kunming, China, July 12-15, vol. 5, pp. 2815–2819 (2008)

    Google Scholar 

  10. Gan, J.-Y., He, S.-B.: Face recognition based on 2DLDA and support vector machine. In: Proceedings of International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR 2009), Baoding, China, July 12-15, pp. 211–214 (2009)

    Google Scholar 

  11. Zhao, L., Song, Y., Zhu, Y., Zhang, C., Zheng, Y.: Face recognition based on multi-class svm. In: Proceedings of Chinese Control and Decision Conference (CCDC 09), Guilin, China, June 17-19, p. 5871 (2009)

    Google Scholar 

  12. Cortes, C., Vapnik, V.N.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  13. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

  14. Fung, G., Mangasarian, O.L.: Proximal support vector machine classifiers. In: International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, pp. 77–86 (2001)

    Google Scholar 

  15. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: Theory and applications. Neurocomputing 70(1-3), 489 (2006)

    Article  Google Scholar 

  16. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: A new learning scheme of feedforward neural networks. In: Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), Budapest, Hungary, July 25-29, vol. 2, pp. 985–990 (2004)

    Google Scholar 

  17. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 17(4), 879–892 (2006)

    Article  Google Scholar 

  18. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70, 3056–3062 (2007)

    Article  Google Scholar 

  19. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71, 3460–3468 (2008)

    Article  Google Scholar 

  20. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for classification. Neurocomputing 74, 155–163 (2010)

    Article  Google Scholar 

  21. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. The Journal of Machine Learning Research 1, 113–141 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Fletcher, R.: Practical Methods of Optimization: Volume 2 Constrained Optimization. Wiley, New York (1981)

    MATH  Google Scholar 

  23. Haykin, S.: Neural Networks: A comprehensive foundation. Prentice-Hall, New Jersey (1999)

    MATH  Google Scholar 

  24. Serre, D.: Matrices: Theory and Applications. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  25. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and its Applications. John Wiley & Sons, Inc., New York (1971)

    MATH  Google Scholar 

  26. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  27. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagation errors. Nature 323, 533–536 (1986)

    Article  MATH  Google Scholar 

  28. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zong, W., Zhou, H., Huang, GB., Lin, Z. (2011). Face Recognition Based on Kernelized Extreme Learning Machine. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A. (eds) Autonomous and Intelligent Systems. AIS 2011. Lecture Notes in Computer Science(), vol 6752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21538-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21538-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21537-7

  • Online ISBN: 978-3-642-21538-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics