Skip to main content

Artificial Bee Colony Based Mapping for Application Specific Network-on-Chip Design

  • Conference paper
Book cover Advances in Swarm Intelligence (ICSI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6728))

Included in the following conference series:

Abstract

A new mapping algorithm is proposed based on Artificial Bee Colony (ABC) model to solve the problem of energy aware mapping optimization in Network-on-Chip (NoC) design. The optimal mapping result can be achieved by transmission of the information among various individuals. The comparison of the proposed algorithm with Genetic Algorithm (GA) and Max-Min Ant System (MMAS) based mapping algorithm shows that the new algorithm has lower energy consumption and faster convergence rate. Simulations are carried out and the results show the ABC based method could save energy by 15.5% in MMS, 5.1% in MPEG-4 decoder and 12.9% in VOPD compared to MMAS, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jingcao, H., Radu, M.: Energy-aware mapping for tile-based NoC architectures under performance constraints. In: The 2003 Asia and South Pacific Design Automation Conference, pp. 233–239. ACM, Kitakyushu (2003)

    Chapter  Google Scholar 

  2. Zhou, G., Yin, Y., Hu, Y., Gao, M.: NoC Mapping Based on Ant Colony Optimization Algorithm. Computer Engineering and Applications 41(18), 7–10 (2005) (in Chinese)

    Google Scholar 

  3. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a network on chip architecture. In: Euromicro Symposium on Digital System Design, pp. 180–187 (2003)

    Google Scholar 

  4. Lei, W., Xiang, L.: Energy- and Latency-Aware NoC Mapping Based on Chaos Discrete Particle Swarm Optimization. In: 2010 International Conference on Communications and Mobile Computing (CMC), pp. 263–268 (2010)

    Google Scholar 

  5. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8(1), 687–697 (2008)

    Article  Google Scholar 

  6. Ding, H., Li, F.: Bee Colony Algorithm for TSP Problem and Parameter Improvement. China Science and Technology Information 03, 241–243 (2008) (in Chinese)

    Google Scholar 

  7. Stüzle, T., Hoss, H.H.: MAX-MIN Ant system. Future Gener. Comput. System. 16(9), 889–914 (2000)

    Article  Google Scholar 

  8. Hu, J., Marculescu, R.: Exploiting the routing flexibility for energy/performance aware mapping of regular NoC architectures. In: Design, Automation and Test in Europe Conference and Exhibition, pp. 688–693 (2003)

    Google Scholar 

  9. Hu, J., Marculescu, R.: Energy- and performance-aware mapping for regular NoC architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24(4), 551–562 (2005)

    Article  Google Scholar 

  10. XingBao, L., ZiXing, C.: Artificial Bee Colony Programming Made Faster. In: Fifth International Conference on Natural Computation (ICNC 2009), pp. 154–158 (2009)

    Google Scholar 

  11. Chen, X., Peh, L.-S.: Leakage power modeling and optimization in interconnection networks. In: The 2003 International Symposium on Low Power Electronics and Design (ISLPED 2003), pp. 90–95 (2003)

    Google Scholar 

  12. Van Der Tol, E.B., Jaspers, E.G.T.: Mapping of MPEG-4 decoding on a flexible architecture platform. In: SPIE - Medio. Processors, pp. 1–13 (2002)

    Google Scholar 

  13. Morgan, A.A., Elmiligi, H., El-KharashiF, M.W.,Gebali, F.: Multi-objective optimization for Networks-on-Chip architectures using Genetic Algorithms. In: 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3725–3728 (2010)

    Google Scholar 

  14. Murali, S., De Micheli, G.: SUNMAP: a tool for automatic topology selection and generation for NoCs. In: 41st Proceedings of Design Automation Conference, pp. 914–919 (2004)

    Google Scholar 

  15. Dumitriu, V., Khan, G.N.: Throughput-Oriented NoC Topology Generation and Analysis for High Performance SoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17(10), 1433–1446 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, Z., Gu, H., Feng, H., Shu, B. (2011). Artificial Bee Colony Based Mapping for Application Specific Network-on-Chip Design. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21515-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21515-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21514-8

  • Online ISBN: 978-3-642-21515-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics