Skip to main content

Zusammenfassung

Die Hämostase ist ein komplexes, fein reguliertes Zusammenspiel von Vorgängen, die einerseits die Fließfähigkeit des Blutes im Gefäßsystem aufrechterhalten, andererseits bei einer Verletzung einen sofortigen Gefäßverschluss ermöglichen und Reparaturvorgänge zur Wiederherstellung der Gefäßstruktur einleiten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Zu 5.1.1–5.1.3, 5.1.5, 5.1.6

  • Alban S (2010) Heparine und andere Glykoantikoagulanzien. In: Pötzsch B, Madlener K (Hrsg) Hämostaseologie, 2. Aufl. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Anderson JL et al (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116:2563–2570

    Google Scholar 

  • Bauersachs RM (2008) New anticoagulants. Hamostaseologie 28:21–26

    Google Scholar 

  • Bauersachs R, Alban S (2007) Perioperative bridging with fondaparinux in a woman with antithrombin deficiency. Thromb Haemost 97:498–499

    Google Scholar 

  • Bauersachs RM, Lindhoff-Last E, Ehrly AM et al (1999) Treatment of hirudin overdosage in a patient with chronic renal failure. Thromb Haemost 81:323–324

    Google Scholar 

  • Elalamy I, Lecrubier C, Potevin F et al (1995) Absence of in vitro crossreaction of pentasaccharide with the plasma heparin-dependent factor of twenty-five patients with heparin-associated thrombocytopenia. Thromb Haemost 74:1384–1385

    Google Scholar 

  • Garcia D, Regan S, Crowther M, Hughes RA, Hylek EM (2005) Warfarin maintenance dosing patterns in clinical practice: implications for safer anticoagulation in the elderly population. Chest 127:2049–2056

    Google Scholar 

  • GlaxoSmithKline GmbH, Co KG (2008) Fachinformation Arixtra®

    Google Scholar 

  • Harenberg J, Huhle G, Hoffmann U (1998) Pharmakologie der Heparine und Heparinoide. In: Müller -BerghausG, Pötzsch B (Hrsg) Hämostaseologie. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Klein TE et al (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360:753–764

    Google Scholar 

  • Lim W, Dentali F, Eikelboom JW, Crowther MA (2006) Meta-analysis: low-molecular-weight heparin and bleeding in patients with severe renal insufficiency. Ann Intern Med 144:673–684

    Google Scholar 

  • Meda (2011) Fachinformation Marcumar®

    Google Scholar 

  • Oldenburg J, Bevans CG, Muller CR, Watzka M (2006) Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle. Antioxid Redox Signal 8:347–353

    Google Scholar 

  • Palareti G (2011) Bleeding with anticoagulant treatments. Hamostaseologie 31:237–242

    Google Scholar 

  • van Leeuwen Y, Rosendaal FR, van der Meer FJ (2008) The relationship between maintenance dosages of three vitamin K antagonists: Acenocoumarol, warfarin and phenprocoumon. Thromb Res 123:225–230

    Google Scholar 

Zu 5.1.4

  • Blech S, Ebner T, Ludwig-Schwellinger E et al (2008) The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos 36:386–399

    Google Scholar 

  • Frost C, Yu Z, Moore K et al. (2007) Apixaban, an oral direct factor Xa inhibitor: multiple-dose safety, pharmacokinetics and pharmacodynamics in healthy subjects. J Thromb Haemost 5: P-M–664

    Google Scholar 

  • He K, He B, Grace JE et al (2006) Preclinical Pharmacokinetic and Metabolism of Apixaban, a Potent and Selective Factor Xa Inhibitor. ASH Annual Meeting Abstracts 108:91–0

    Google Scholar 

  • Kubitza D, Becka M, Voith B et al (2005) Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther 78:412–421

    Google Scholar 

  • Kubitza D, Becka M, Zuehlsdorf M et al (2007) Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J Clin Pharmacol 47:218–226

    Google Scholar 

  • Lang D, Freudenberger C, Weinz C (2009) In vitro metabolism of rivaroxaban, an oral, direct factor Xa inhibitor, in liver microsomes and hepatocytes of rats, dogs, and humans. Drug Metab Dispos 37:1046–1055

    Google Scholar 

  • Perzborn E, Strassburger J, Wilmen A et al (2005) In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939 - an oral, direct Factor Xa inhibitor. J Thromb Haemost 3:514–521

    Google Scholar 

  • Pinto DJ, Orwat MJ, Koch S et al (2007) Discovery of 1-(4-methoxyphenyl)- 7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro- 1H -pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem 50:5339–5356

    Google Scholar 

  • Raghavan N, Frost CE, Yu Z et al (2009) Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug Metab Dispos 37:74–81

    Google Scholar 

  • Roehrig S, Straub A, Pohlmann J et al (2005) Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3- [4-(3-oxomorpholin- 4-yl)phenyl]-1,3-oxazolidin- 5-yl}methyl)thiophene- 2- carboxamide (BAY 59-7939): an oral, direct factor Xa inhibitor. J Med Chem 2005 48:5900–5908

    Google Scholar 

  • Stangier J, Eriksson BI, Dahl OE et al (2005) Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol 45:555–563

    Google Scholar 

  • Stangier J, Stahle H, Rathgen K et al (2008a) Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, are not affected by moderate hepatic impairment. J Clin Pharmacol 48:1411–1419

    Google Scholar 

  • Stangier J, Stahle H, Rathgen K et al (2008b) Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin Pharmacokinet 47:47–59

    Google Scholar 

  • Ufer M (2010) Comparative efficiacy and safety of the novel oral anticoagulants dabigatran, rivaroxaban and apixaban in preclinical and clinical development. Thromb Haemost 103:572–585

    Google Scholar 

  • Weinz C, Radtke M, Schmeer K et al (2004) In vitro metabolism of BAY 59-7939 - an oral, direct factor Xa inhibitor [abstract no. 195]. Drug Metab Rev 36(Suppl 1):9–8

    Google Scholar 

  • Weinz C, Schwarz T, Kubitza D et al (2009) Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans. Drug Metab Dispos 37:1056–1064

    Google Scholar 

  • Wienen W, Stassen JM, Priepke H et al (2007) In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb Haemost 98:155–162

    Google Scholar 

  • Wong PC, Crain EJ, Xin B et al (2008) Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. J Thromb Haemost 6:820–829

    Google Scholar 

  • Zhang D, He K, Raghavan N et al (2009) Comparative Metabolism of C-14 Labeled Apixaban in Mice, Rats, Rabbits, Dogs, and Humans. Drug Metab Dispos 37:1738–1748

    Google Scholar 

Zu 5.2

  • Anderson DR, Dunbar MJ, Bohm ER et al (2013) Aspirin versus low- molecular-weight heparin for extended venous thromboembolism prophylaxis after total hip arthroplasty: a randomized trial. Ann Intern Med 158:800–806

    Google Scholar 

  • Antiplatelet Trialists’ Collaboration (1994) Collaborative overview of randomised trials of antiplatelet therapy. III. Reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients. Br Med J 308:235–246

    Google Scholar 

  • Becattini C, Agnelli G, Schenone A et al (2012) Aspirin for preventing the recurrence of venous thromboembolism. New Engl J Med 366:1959–1967

    Google Scholar 

  • Beksac B, Gonzalez DValleeA, Anderson J, Sharrock NE, Sculco TP, Salvcato EA (2007) Symptomatic thrombembolism after on-stage bilateral THA with a multimodal prophylaxis protocol. Clin Orthop Relat Res 463:114–119

    Google Scholar 

  • Berend KR, Lombardi AV Jr (2006) Multimodal venous thromboembolic disease prevention for patients undergoing primary or revision total joint arthroplasty: the role of aspirin. Am J Orthop 35:24–29

    Google Scholar 

  • Bird JE, Wang X, Smith PL, Barbera F, Huang C, Schumacher WA (2012) A platelet target for venous thrombosis? P2Y1 deletion or antagonism protects mice from vena cava thrombosis. J Thromb Thrombolysis 34:199–207

    Google Scholar 

  • Bozic KJ, Vail TP, Pekow PS, Maselli JH, Lindenauer PK, Auerbach AD (2010) Does aspirin have a role in venous thromboembolism prophylaxis in total knee arthroplasty patients? J Arthroplasty 7:1053–1060

    Google Scholar 

  • Braekkan SK, Mathiesen EB, Njolstad I, Wilsgaard T, Stormers J, Hansen JB (2009) Mean platelet volume is a risk factor for venous thrombembolism: The Tromso study. J Thromb Haemostasis: 8: 157–162

    Google Scholar 

  • Brighton TA, Eikelboom JW, Mann K et al (2012) Low-dose Aspirin for preventing recurrent venous thromboembolism. New Engl J Med 367:1979–1987

    Google Scholar 

  • Brown GA (2009) Venous thromboembolism prophylaxis after major orthopaedic surgery: a pooled analysis of randomized controlled trials. J Arthroplasty 6(Suppl):77–83

    Google Scholar 

  • Callaghan JJ, Warth LC, Hoballah JJ, Liu SS, Wells CW (2008) Evaluation of deep venous thrombosis prophylaxis in low-risk patients undergoing total knee arthroplasty. J Arthroplasty 23(Suppl 1):20–24

    Google Scholar 

  • Canadian Agency for Drugs and Technologies in Health. Acetylsalicylic acid for venous thromboembolism prophylaxis: clinical evidence, benefits and harms [Internet]. Ottawa: the Agency; 2011 Jun 23. (Rapid response report: summary of abstracts). http://cadth.ca/media/pdf/htis/june-2011/RB0383_ASA_for_VTE_Final.pdf

  • Cesarone MR, Belcaro G, Nicolaides AN et al (2002) Venous thrombosis from air travel: the LONFLIT3 study-prevention with aspirin vs. low-molecular-weight heparin (LMWH) in high-risk subjects: a randomized trial. Angiology 53:1–6

    Google Scholar 

  • Cooley BC, Herrera AJ (2013) Cross-modulatory effects of clopidogrel and heparin on platelet and fibrin incorporation in thrombosis. Blood Coagul Fibrinolysis 2013, epub ahead of print

    Google Scholar 

  • Intermountain Joint Replacement Center Writing Committee (2012) A prospective comparison of warfarin to aspirin for thromboprophylaxis in total hip and total knee arthroplasty. J Arthoplasty 27: 1-9e

    Google Scholar 

  • Ji H-M, Lee Y-K, Ha Y-C, Kim H-C, Koo K-H (2011) Little impact of antiplatelet agents on venous thrombembolism after hip fracture surgery. J Korean Med Sci 26:1625–1629

    Google Scholar 

  • Leon C, Alex M, Klocke A, Morgenstern E, Moosbauer C, Eckly A, Spannagl M, Gachet C, Engelmann B (2004) Platelet ADP receptors contribute to the initiation of intravascular coagulation. Blood 103:594–600

    Google Scholar 

  • Lijfering WM, Flinterman LE, Vandenbroucke JP, Rosendaal FR, Cannegieter SC (2011) Relationship between venous and arterial thrombosis: A review of the literature from a causal perspective. Sem Thromb Hemostas 37:885–896

    Google Scholar 

  • Loke YK, Derry S (2002) Air travel and venous thrombosis: how much help might aspirin be? Med Gen Med 4:4

    Google Scholar 

  • Lopez JA, Chen J (2009) Pathophysiology of venous thrombosis. Thromb Res 123(Suppl 4):S30–S34

    Google Scholar 

  • Lotke PA, Lonner JH (2006) The benefit of aspirin chemoprophylaxis for thrombembolism after total knee arthroplasty. Clin Orthop Rel Res 452:175–180

    Google Scholar 

  • Lyman GH, Khorana AA, Kuderer NM et al (2013) Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 31:2189–2204

    Google Scholar 

  • Marsland D, Mears SC, Kates SL (2010) Venous thromboembolic prophylaxis for hip fractures. Osteoporos Int 21(Suppl 4):S593–S604

    Google Scholar 

  • Pulmonary embolism prevention (PEP) trial collaborative Group (2000) Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary embolism prevention (PEP) trial. The Lancet 355:1295–1302

    Google Scholar 

  • Qaseem A, Chou R et al (2011) Venous thrombembolism prophylaxis in hospitalized patients: A clinical practice guideline from the American College of Physicians. Ann Int Med 155:625–632

    Google Scholar 

  • Rosendaal FR (1999) Venous thrombosis: a multicausal disease. The Lancet 353:1167–1173

    Google Scholar 

  • Schann TA, Lstler L, Engoren MC, Habib RH (2010) Incidence and predictors of postoperative deep vein thrombosis in cardiac surgery in the era of aggressive thromboprophylaxis. Ann Thorac Surg 90:760–766

    Google Scholar 

  • Schellong S (2013) Aspirin for long-term maintainance of venous thromboembolism. Vasa 42:83–85

    Google Scholar 

  • Schrör K (2011) Acetylsalicylsäure. Dr.Schrör-Verlag, Frechen, S 239–244

    Google Scholar 

  • Sevitt S (1974) The structure and growth of valve-pocket thrombi in femoral veins. J Clin Pathol 27:517–528

    Google Scholar 

  • Sharrock NE, Della Valle AG et al (2008) Potent anticoagulants are associated with a higher all-cause mortality rate after hip and knee arthroplasty. Clin Orthop Relat Res 466:714–721

    Google Scholar 

  • Stewart DW, Freshour JE (2013) Aspirin for the prophylaxis of venolus thromboembolic evebnts in orthopedic surgery patients: a comparison of the AAOS and ACCP guidelines with review of the evidence. Ann Pharmacother 47:63–74

    Google Scholar 

  • Turpie AGG, Esmon C (2011) Venous and arterial thrombosis - pathogenesis and the rationale for anticoagulation. Thromb Haemost 105:586–596

    Google Scholar 

  • Warkentin TE (2012) Aspirin for dual prevention of venous and arterial thrombosis. New Engl J Med 367:2039–2041

    Google Scholar 

  • Watson HG, Chee YL (2008) Aspirin and other antiplatelet drugs in the prevention of venous thromboembolism. Blood Rev 22:107–116

    Google Scholar 

  • Westrich GH, Sculco TP (1996) Prophylaxis against deep venous thrombosis after total knee arthroplasty. J Bone Joint Surg 78A:826–834

    Google Scholar 

Zu 5.3

  • Althaus K, Hron G, Strobel U, Abbate R, Rogolino A, Davidson S, Greinacher A, Bakchoul T (2013) Evaluation of automated immunoassays in the diagnosis of heparin induced thrombocytopenia. Thromb Res 31:e85–e90

    Google Scholar 

  • Linkins LA, Dans AL, Moores LK, Bona R, Davodson BL, Schulman S, Crowther M (2012) Treatment and Prevention of Heparin-Induced Thrombocytopenia. Chest 141 (2 Suppl): e495S–530S

    Google Scholar 

  • Lo GK, Juhl D, Warkentin TE, Sigouin CS, Eichler P, Greinacher A (2006) Evaluation of pretest clinical score (4 T’s) for the diagnosis of heparin-induced thrombocytopenia in two clinical settings. J Thromb Haemost 4:759–765

    Google Scholar 

  • Kelton JG, Arnold DM, Bates SM (2013) Nonheparin Anticoagulants for Heparin-Induced Thrombocytopenia. New Engl J Med 368:737–744

    Google Scholar 

  • Thiele T, Althaus K, Greinacher A (2010) Heparin-induced thrombozytopenia. Internist (Berl) 51:1127–1132

    Google Scholar 

  • Warkentin TE (2003) Heparin-induced thrombocytopenia: pathogenesis and management. Br J Haematol 121:535–555

    Google Scholar 

Zu 5.4

  • Arzneimittelkommission der Deutschen Ärzteschaft (2011) Risiko von venösen Thromboembolien bei Einnahme von Drospirenon-haltigen kombinierten oralen Kontrazeptiva. Ärzteblatt 108:A244–2

    Google Scholar 

  • Cosman F, Baz-Hecht M, Cushman M, Vardy MD, Cruz JD, Nieves JW, Zion M, Lindsay R (2005) Short-term effects of estrogen, tamoxifen and raloxifene on hemostasis: a randomized-controlled study and review of the literature. Thromb Res 116:1–13

    Google Scholar 

  • Cushman M, Costantino JP, Bovill EG, Wickerham DL, Buckley L, Roberts JD, Krag DN (2003) Effect of tamoxifen on venous thrombosis risk factors in women without cancer: The Breast Cancer Prevention Trial. Br J Haematol 120:109–116

    Google Scholar 

  • DeLoughery TG (2011) Estrogen and thrombosis: controversies and common sense. Rev Endocr Metab Disord 12:77–84

    Google Scholar 

  • Deutsche Gesellschaft für Hämato-Onkologie (2011) Leitlinie Multiples Myelom. http://www.dgho-onkopedia.de/onkopedia/leitlinien/multiples-myelom

  • Dinger JC, Heinemann LA, Kuhl-Habich D (2007) The safety of a drospirenone- containing oral contraceptive: final results from the European Active Surveillance Study on oral contraceptives based on 142,475 women-years of observation. Contraception 75:344–354

    Google Scholar 

  • Dunn N (2011) The risk of deep venous thrombosis with oral contraceptives containing drospirenone. Br Med J 342:d251–9

    Google Scholar 

  • Gomes MP, Deitcher SR (2004) Risk of venous thromboembolic disease associated with hormonal contraceptives and hormone replacement therapy: a clinical review. Arch Intern Med 164:1965–1976

    Google Scholar 

  • Grady D, Wenger NK, Herrington D, Khan S, Furberg C, Hunninghake D, Vittinghoff E, Hulley S (2000) Postmenopausal hormone therapy increases risk for venous thromboembolic disease. The Heart and Estrogen/progestin Replacement Study. Ann Intern Med 132:689–696

    Google Scholar 

  • Gräser T (2001) Sexualsteroide und Hämostase. Hämostaseologie 21:30–34

    Google Scholar 

  • Haddad TC, Greeno EW (2006) Chemotherapy-induced thrombosis. Thromb Res 118:555–568

    Google Scholar 

  • Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin- Boes G, Houghton J, Locker GY, Tobias JS (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. The Lancet 365:60–62

    Google Scholar 

  • Hurwitz HI, Saltz LB, Van Cutsem E, Cassidy J, Wiedemann J, Sirzen F, Lyman GH, Rohr UP (2011) Venous thromboembolic events with chemotherapy plus bevacizumab: a pooled analysis of patients in randomized phase II and III studies. J Clin Oncol 29:1757–1764

    Google Scholar 

  • Jick SS, Hernandez RK (2011) Risk of non-fatal venous thromboembolism in women using oral contraceptives containing drospirenone compared with women using oral contraceptives containing levonorgestrel: case-control study using United States claims data. Br Med J 342:d215–1

    Google Scholar 

  • Kemmeren JM, Algra A, Grobbee DE (2001) Third generation oral contraceptives and risk of venous thrombosis: meta-analysis. Br Med J 323:131–134

    Google Scholar 

  • Kristinsson SY (2010) Thrombosis in multiple myeloma. Hematology Am Soc Hematol Educ Program 2010: 437–444

    Google Scholar 

  • Larocca A, Cavallo F, Bringhen S et al (2012) Aspirin or enoxaparin thromboprophylaxis for patients with newly diagnosed multiple myeloma treated with lenalidomide. Blood 119:933–939

    Google Scholar 

  • Lechner D, Weltermann A (2009) Pathophysiology of chemotherapyassociated thrombosis. Hämostaseologie 29:112–120

    Google Scholar 

  • Lidegaard O, Lokkegaard E, Svendsen AL, Agger C (2009) Hormonal contraception and risk of venous thromboembolism: national follow-up study. BMJ 339:b289–0

    Google Scholar 

  • Lopez JA, Chen J (2009) Pathophysiology of venous thrombosis. Thromb Res 123(Suppl 4):S30–S34

    Google Scholar 

  • Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S (2008) Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300:2277–2285

    Google Scholar 

  • Noble S, Pasi J (2010) Epidemiology and pathophysiology of cancerassociated thrombosis. Br J Cancer 102(Suppl 1):S2–S9

    Google Scholar 

  • Palumbo A, Cavo M, Bringhen S et al (2011) Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol 29:986–993

    Google Scholar 

  • Parkin L, Sharples K, Hernandez RK, Jick SS (2011) Risk of venous thromboembolism in users of oral contraceptives containing drospirenone or levonorgestrel: Nested case-control study based on UK General Practice Research Database Br Med J 342: d2139

    Google Scholar 

  • Patrassi GM, Sartori MT, Rigotti P, Di-Landro D, Theodoridis P, Fioretti M, Capalbo M, Saggiorato G, Boeri G, Girolami A (1995) Reduced fibrinolytic potential one year after kidney transplantation. Relationship to long-term steroid treatment. Transplantation 59:1416–1420

    Google Scholar 

  • Rosendaal FR (1999) Venous thrombosis: a multicausal disease. The Lancet 353:1167–1173

    Google Scholar 

  • Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333

    Google Scholar 

  • van Hylckama V, Helmerhorst FM, Vandenbroucke JP, Doggen CJ, Rosendaal FR (2009) The venous thrombotic risk of oral contraceptives, effects of oestrogen dose and progestogen type: results of the MEGA case-control study. BMJ 339:b292–1

    Google Scholar 

  • van Vliet HA, Tchaikovski SN, Rosendaal FR, Rosing J, Helmerhorst FM (2009) The effect of the levonorgestrel-releasing intrauterine system on the resistance to activated protein C (APC). Thromb Haemost 101:691–695

    Google Scholar 

  • Winkler UH (2000) Hemostatic effects of third- and second-generation oral contraceptives: absence of a causal mechanism for a difference in risk of venous thromboembolism. Contraception 62:11S–20S

    Google Scholar 

  • Wu O, Robertson L, Twaddle S, Lowe GD, Clark P, Greaves M, Walker ID, Langhorne P, Brenkel I, Regan L, Greer I (2006) Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study. Health Technol Assess 10:1–110

    Google Scholar 

  • Zamagni E, Brioli A, Tacchetti P, Zannetti B, Pantani L, Cavo M (2011) Multiple myeloma, venous thromboembolism, and treatmentrelated risk of thrombosis. Semin Thromb Hemost 37:209–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauersachs, R., Kröger, M., Schrör, K., Hohlfeld, T., Spannagl, M., Hart, C. (2014). Pharmakologie. In: Nüllen, H., Noppeney, T., Diehm, C. (eds) VTE - Venöse Thromboembolien. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21496-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21496-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21495-0

  • Online ISBN: 978-3-642-21496-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics