Skip to main content

Physiologie und Pathophysiologie

  • Chapter
VTE - Venöse Thromboembolien

Zusammenfassung

Das Venensystem ist ein wesentlicher Bestandteil des Blutkreislaufs, seine Hauptfunktion ist der Rücktransport des Blutes aus Geweben und Organen zum Herzen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Zu 3.1

  • Arbeitsgemeinschaft Pulmonale Hypertonie, Olschewski H et al. (2006) Leitlinie zur Diagnostik und Therapie der chronischen pulmonalen Hypertonie. Pneumologie 60: 749–771

    Google Scholar 

  • Ashrani AA, Heit JA (2009) Incidence and cost burden of post-thrombotic syndrome. J Thromb Thrombolysis 28:465–476

    Google Scholar 

  • Battistini B, Chailler P, D’Orléans-Juste P, Brière N, Sirois P (1993) Growth regulatory properties of endothelins. Peptides 14:385–399

    Google Scholar 

  • Beise U, Heimes S, Schwarz W (2011) Gesundheits- und Krankheitslehre, 2. Aufl. Springer, Berlin

    Google Scholar 

  • Berufsverband Deutscher Internisten e.V. (Hrsg) Venöse Thrombose, www.internisten-im-netz.de/de_symptome-thrombose_477.html, Zugriff 01/2012

  • Bohl W (1998) Technische Strömungslehre, 11. Aufl. Vogel Business Media

    Google Scholar 

  • Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJ, Degen JL (1996) Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87:709–719

    Google Scholar 

  • Cockell CS, Marshall JM, Dawson KM, Cederholm-Williams SA, Ponting CP (1998) Evidence that the conformation of unliganded human lasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-terminal peptide. Biochem J 333:99–105

    Google Scholar 

  • Deeg K-H, Peters H, Schumacher R, Weitzel D (1997) Die Ultraschalluntersuchung des Kindes, 2. Aufl. Springer, Berlin

    Google Scholar 

  • Deutsche Gesellschaft für Angiologie, www.dgangiol.de, Zugriff 01/2012

    Google Scholar 

  • Feldner A, Otto H, Rewerk S, Hecker M, Korff T (2011) Experimental hypertension triggers varicosis-like maladaptive venous remodelling through activator protein-1. FASEB J 25:3613–3621

    Google Scholar 

  • Frank A (2008) Flachskamp: Kursbuch Echokardiographie, 4. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Frenzel H, Hort W (1975) Vergleichende experimentelle Untersuchungen über die Thrombenorganisation in Arterien und Venen. Basic Res Cardiol 70:480–494

    Google Scholar 

  • Gniadecka M, Karlsmark T, Bertram A (1998) Removal of dermal edema with class I and II compression stockings in patients with lipodermatosclerosis. J Am Acad Dermatol 39:966–970

    Google Scholar 

  • Grosser KD (1980) Lungenembolie. Internist (Berl) 21:273–282

    Google Scholar 

  • Herold G (2001) Innere Medizin. Herold Eigenverlag, Köln

    Google Scholar 

  • Kusch B, Waldhans S, Sattler A, Wagner A, Hecker M, Moosdorf R, Vogt S (2006) Inhibition of carotis venous bypass graft disease by intraoperative nucleic acid-based therapy in rabbits. Thorac Cardiovasc Surg 54:388–392

    Google Scholar 

  • Lang J, Wachsmuth W, Lanz T von (1972) Praktische Anatomie. Bein und Statik: Ein Lehr- und Hilfsbuch der anatomischen Grundlagen ärztlichen Handelns, 2. Aufl. Springer, Berlin Heidelberg

    Google Scholar 

  • Lauth M, Wagner AH, Cattaruzza M, Orzechowski HD, Paul M, Hecker (2000) Transcriptional control of deformation-induced preproendothelin- 1 gene expression in endothelial cells. J Mol Med (Berl) 78:441–450

    Google Scholar 

  • Leitlinie Diagnostik und Therapie der Chronischen Venösen Insuffizienz (CVI) der Deutschen Gesellschaft für Phlebologie, www.awmf.org/, Zugriff 01/2012

    Google Scholar 

  • Leitlinien-Informations- und Recherchedienst des Ärztlichen Zentrums für Qualität in der Medizin, www.leitlinien.de/mdb/keywords/thrombose, Zugriff 01/2012

  • McCollum C (1998) Avoiding the consequences of deep vein thrombosis: elevation and compression are important and too often forgotten. Br Med J 12:69–6

    Google Scholar 

  • Partsch H (Hrsg) (1989) Phlebologiekurs. Zyma, München Partsch H, Oburger K, Mostbeck A, König B, Köhn H (1992) Frequency of pulmonary embolism in ambulant patients with pelvic vein thrombosis: A prospective study. J Vasc Surg 16:715–722

    Google Scholar 

  • Pirard D, Bellens B, Vereecken P (2008) The post-thrombotic syndrome - a condition to prevent. Dermatol Online J 14:1–3

    Google Scholar 

  • Roumen-Klappe EM, Janssen MC, Van Rossum J, Holewijn S, Van Bokhoven MM, Kaasjager K et al (2009) Inflammation in deep vein thrombosis and the development of post-thrombotic syndrome: a prospective study. J Thromb Haemost 7:582–587

    Google Scholar 

  • Shbaklo H, Holcroft CA, Kahn SR (2009) Levels of inflammatory markers and the development of the post-thrombotic syndrome. Thromb Haemost 101: 505-512 Virchow R (1856) Phlogose und Thrombose im Gefäßsystem. Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Berlin: von Meininger III:458–635

    Google Scholar 

Zu 3.2: Weiterführende Literatur

  • Anderson JA, Lim W, Weitz JI (2013) Genetics of coagulation: what the cardiologist needs to know. Can J Cardiol 2013 29: 75-88 (Review)

    Google Scholar 

  • Cerletti C, Tamburrelli C, Izzi B, Gianfagna F, de Gaetano G (2012) Platelet-leukocyte interactions in thrombosis. Thromb Res 129: 263-266 (Review)

    Google Scholar 

  • Furie B, Furie BC (2012) Formation of the clot. Thromb Res 130(Suppl 1):S44–S46 (Review)

    Google Scholar 

  • Israels SJ, and ML R (2013) What we have learned from inherited platelet disorders. Pediatr Blood Cancer 60(Suppl 1):S2–S7 (Review)

    Google Scholar 

  • Schulz C, Massberg S (2012) Platelets in atherosclerosis and thrombosis. Handb Exp Pharmacol 210: 111-133 (Review)

    Google Scholar 

  • van Hinsbergh VW (2012) Endothelium - role in regulation of coagulation and inflammation. Semin Immunopathol 34: 93-106 (Review)

    Google Scholar 

Zu 3.3

  • Akhter MS, Biswas A, Ranjan R, Meena A, Yadav BK, Sharma A, Saxena R (2010) Plasminogen activator inhibitor-1 (PAI-1) gene 4G/5G promoter polymorphism is seen in higher frequency in the Indian patients with deep vein thrombosis. Clin Appl Thromb Hemost 16:184–188

    Google Scholar 

  • Alexandrov AV (2009) Ultrasound enhancement of fibrinolysis. Stroke 40: S107–110

    Google Scholar 

  • Angles-Cano E, Hervio L, Rouy D, Fournier C, Chapman JM, Laplaud M, Koschinsky ML (1994) Effects of lipoprotein(a) on the binding of plasminogen to fibrin and its activation by fibrin-bound tissue-type plasminogen activator. Chem Phys Lipids 67-68:369–380

    Google Scholar 

  • Arnesen H, Hoiseth A, Ly B (1982) Streptokinase of heparin in the treatment of deep vein thrombosis Follow-up results of a prospective study. Acta Med Scand 211:65–68

    Google Scholar 

  • Baele G, Bary JL, van Stalle F (1983) Activation of platelets and of fibrinolysis by venous occlusion in healthy volunteers and influence of suloctidil in comparison with placebo. Arzneimittelforschung 33:1203–1205

    Google Scholar 

  • Baldwin ZK, Comerota AJ, Schwartz LB (2004) Catheter-directed thrombolysis for deep venous thrombosis. Vasc Endovascular Surg 38:1–9

    Google Scholar 

  • Baruah DB, Dash RN, Chaudhari MR, Kadam SS (2006) Plasminogen activators: a comparison. Vascul Pharmacol 44:1–9

    Google Scholar 

  • Bellart J, Gilabert R, Fontcuberta J, Borrell M, Miralles RM, Cabero L (1997) Fibrinolysis changes in normal pregnancy. J Perinat Med 25:368–372

    Google Scholar 

  • Bern MM, McCarthy N (2010) Failure to lyse venous thrombi because of elevated plasminogen activator Inhibitor 1 (PAI-1) and 4G polymorphism of its promotor genome (The PAI-1/4G Syndrome). Clin Appl Thromb Hemost 16:574–578

    Google Scholar 

  • Binder A, Endler G, Muller M, Mannhalter C, Zenz W (2007) 4G4G genotype of the plasminogen activator inhibitor-1 promoter polymorphism associates with disseminated intravascular coagulation in children with systemic meningococcemia. J Thromb Haemost 5:2049–2054

    Google Scholar 

  • Boberg M, Killander A (1983) Evaluation of euglobulin clot lysis time as a screening method for determination of blood plasma fibrinolytic activity after venous occlusion. Acta Med Scand 213:309–311

    Google Scholar 

  • Braat EA, Levi M, Bos R, Haverkate F, Lassen MR, de Maat MP, Rijken DC (1999) Inactivation of single-chain urokinase-type plasminogen activator by thrombin in human subjects. J Lab Clin Med 134:161–167

    Google Scholar 

  • Carroll RC, Lockhart MS, Taylor FB, Jr (1984) Effect of crosslinking on the structure of solubilized fibrin degradation products in whole plasma. J Lab Clin Med 103:695–703

    Google Scholar 

  • Casella IB, Presti C, Aun R, Benabou JE, Puech-Leao P (2007) Late results of catheter-directed recombinant tissue plasminogen activator fibrinolytic therapy of iliofemoral deep venous thrombosis. Clinics (Sao Paulo) 62:31–40

    Google Scholar 

  • Castaneda F, Li R, Young K, Swischuk JL, Smouse B, Brady T (2002) Catheter-directed thrombolysis in deep venous thrombosis with use of reteplase: immediate results and complications from a pilot study. J Vasc Interv Radiol 13:577–580

    Google Scholar 

  • Chang R, Butman JA, Lonser RR, Sherry RM, Pandalai PK, Horne MK, 3rd, Lozier JN (2013) Treatment of high-risk venous thrombosis patients using low-dose intraclot injections of recombinant tissue plasminogen activator and regional anticoagulation. J Vasc Interv Radiol 24(27–34):e2–1

    Google Scholar 

  • de Fouw NJ, de Jong YF, Haverkate F, Bertina RM (1988) Activated protein C increases fibrin clot lysis by neutralization of plasminogen activator inhibitor -no evidence for a cofactor role of protein S. Thromb Haemost 60:328–333

    Google Scholar 

  • Dempfle CE, Alesci S, Kucher K, Muller-Peltzer H, Rubsamen K, Borggrefe M (2001a) Plasminogen Activation Without Changes in tPA and PAI-1 in Response to Subcutaneous Administration of Ancrod. Thromb Res 104:433–438

    Google Scholar 

  • Dempfle CE, Argiriou S, Alesci S, Kucher K, Muller-Peltzer H, Rubsamen K, Heene DL (2001b) Fibrin formation and proteolysis during ancrod treatment. Evidence for des-A-profibrin formation and thrombin independent factor XIII activity. Ann N Y Acad Sci 936:210–214

    Google Scholar 

  • Duckert F, Muller G, Nyman D, Benz A, Prisender S, Madar G, Da Silva MA et al (1975) Treatment of deep vein thrombosis with streptokinase. Br Med J 1:479–481

    Google Scholar 

  • Dumantepe M, Tarhan A, Yurdakul I, Ozler A (2012) US-accelerated catheter-directed thrombolysis for the treatment of deep venous thrombosis. Diagn Interv Radiol 18:410–416

    Google Scholar 

  • Enden T, Sandvik L, Klow NE, Hafsahl G, Holme PA, Holmen LO, Ghanima W et al (2007) Catheter-directed Venous Thrombolysis in acute iliofemoral vein thrombosis - the CaVenT study: rationale and design of a multicenter, randomized, controlled, clinical trial (NCT00251771). Am Heart J 154:808–814

    Google Scholar 

  • Fleury V, Lijnen HR, Angles-Cano E (1993) Mechanism of the enhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrinolysis. J Biol Chem 268:18554–18559

    Google Scholar 

  • Flood EC, Hajjar KA (2011) The annexin A2 system and vascular homeostasis. Vascul Pharmacol 54:59–67

    Google Scholar 

  • Gaffney PJ (1975) Distinction between fibrinogen and fibrin degradation products in plasma. Clin Chim Acta 65:109–115

    Google Scholar 

  • Gaffney PJ (1977) Structure of fibrinogen and degradation products of fibrinogen and fibrin. Br Med Bull 33:245–251

    Google Scholar 

  • Gaffney PJ, Lane DA, Kakkar VV, Brasher M (1975) Characterisation of a soluble D dimer-E complex in crosslinked fibrin digests. Thromb Res 7:89–99

    Google Scholar 

  • Gohil R, Peck G, Sharma P (2009) The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls. Thromb Haemost 102:360–370

    Google Scholar 

  • Goldhaber SZ, Haire WD, Feldstein ML, Miller M, Toltzis R, Smith JL, Taveira da Silva AM et al (1993) Alteplase versus heparin in acute pulmonary embolism: randomised trial assessing right-ventricular function and pulmonary perfusion. The Lancet 341:507–511

    Google Scholar 

  • Kakkar VV, Flanc C, Howe CT, O’Shea M, Flute PT (1969) Treatment of deep vein thrombosis. A trial of heparin, streptokinase, and arvin. Br Med J 1:806–810

    Google Scholar 

  • Konstantinides S, Geibel A, Heusel G, Heinrich F, Kasper W (2002) Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N Engl J Med 347:1143–1150

    Google Scholar 

  • Krone KA, Allen KL, McCrae KR (2010) Impaired fibrinolysis in the antiphospholipid syndrome. Curr Rheumatol Rep 12:53–57

    Google Scholar 

  • Lindahl TL, Ohlsson PI, Wiman B (1990) The mechanism of the reaction between human plasminogen-activator inhibitor 1 and tissue plasminogen activator. Biochem J 265:109–113

    Google Scholar 

  • Longstaff C, Thelwell C, Williams SC, Silva MM, Szabo L, Kolev K (2011) The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies. Blood 117:661–668

    Google Scholar 

  • Manninen H, Juutilainen A, Kaukanen E, Lehto S (2012) Catheterdirected thrombolysis of proximal lower extremity deep vein thrombosis: a prospective trial with venographic and clinical follow-up. Eur J Radiol 81:1197–1202

    Google Scholar 

  • Mannucci PM, Mari D, Merati G, Peyvandi F, Tagliabue L, Sacchi E, Taioli E et al (1997) Gene polymorphisms predicting high plasma levels of coagulation and fibrinolysis proteins. A study in centenarians. Arterioscler Thromb Vasc Biol 17:755–759

    Google Scholar 

  • Mateo J, Oliver A, Borrell M, Sala N, Fontcuberta J (1997) Laboratory evaluation and clinical characteristics of 2,132 consecutive unselected patients with venous thromboembolism - results of the Spanish Multicentric Study on Thrombophilia (EMET-Study). Thromb Haemost 77:444–451

    Google Scholar 

  • Meltzer ME, Doggen CJ, de Groot PG, Rosendaal FR, Lisman T (2009) The impact of the fibrinolytic system on the risk of venous and arterial thrombosis. Semin Thromb Hemost 35:468–477

    Google Scholar 

  • Mosesson MW, Siebenlist KR, Meh DA (2001) The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci 936:11–30

    Google Scholar 

  • Mosnier LO, Bouma BN (2006) Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler Thromb Vasc Biol 26:2445–2453

    Google Scholar 

  • Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L (1997) Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost 78:386–391

    Google Scholar 

  • Parikh S, Motarjeme A, McNamara T, Raabe R, Hagspiel K, Benenati JF, Sterling K et al (2008) Ultrasound-accelerated thrombolysis for the treatment of deep vein thrombosis: initial clinical experience. J Vasc Interv Radiol 19:521–528

    Google Scholar 

  • Pfitzner SA, Dempfle CE, Matsuda M, Heene DL (1997) Fibrin detected in plasma of patients with disseminated intravascular coagulation by fibrin-specific antibodies consists primarily of high molecular weight factor XIIIa-crosslinked and plasmin-modified complexes partially containing fibrinopeptide A. Thromb Haemost 78:1069–1078

    Google Scholar 

  • Ritchie H, Lawrie LC, Crombie PW, Mosesson MW, Booth NA (2000) Cross-linking of plasminogen activator inhibitor 2 and alpha 2-antiplasmin to fibrin(ogen). J Biol Chem 275:24915–24920

    Google Scholar 

  • Rogers LQ, Lutcher CL (1990) Streptokinase therapy for deep vein thrombosis: a comprehensive review of the English literature. Am J Med 88:389–395

    Google Scholar 

  • Rouy D, Angles-Cano E (1990) The mechanism of activation of plasminogen at the fibrin surface by tissue-type plasminogen activator in a plasma milieu in vitro Role of alpha 2-antiplasmin. Biochem J 271:51–57

    Google Scholar 

  • Sakata Y, Aoki N (1980) Cross-linking of alpha 2-plasmin inhibitor to fibrin by fibrin-stabilizing factor. J Clin Invest 65:290–297

    Google Scholar 

  • Schaller J, Gerber SS (2011) The plasmin-antiplasmin system: structural and functional aspects. Cell Mol Life Sci 68:785–801

    Google Scholar 

  • Schuster V, Hugle B, Tefs K (2007) Plasminogen deficiency. J Thromb Haemost 5:2315–2322

    Google Scholar 

  • Sillesen H, Just S, Jorgensen M, Baekgaard N (2005) Catheter directed thrombolysis for treatment of ilio-femoral deep venous thrombosis is durable, preserves venous valve function and may prevent chronic venous insufficiency. Eur J Vasc Endovasc Surg 30:556–562

    Google Scholar 

  • Sood V, Luke CE, Deatrick KB, Baldwin J, Miller EM, Elfline M (2010) Upchurch GR, Jr, et al. Urokinase plasminogen activator independent early experimental thrombus resolution: MMP2 as an alternative mechanism. Thromb Haemost 104:1174–1183

    Google Scholar 

  • Stein E, McMahon B, Kwaan H, Altman JK, Frankfurt O, Tallman MS (2009) The coagulopathy of acute promyelocytic leukaemia revisited. Best Pract Res Clin Haematol 22:153–163

    Google Scholar 

  • Tefs K, Gueorguieva M, Klammt J, Allen CM, Aktas D, Anlar FY, Aydogdu SD et al (2006) Molecular and clinical spectrum of type I plasminogen deficiency: A series of 50 patients. Blood 108:3021–3026

    Google Scholar 

  • Thelwell C, Longstaff C (2007) The regulation by fibrinogen and fibrin of tissue plasminogen activator kinetics and inhibition by plasminogen activator inhibitor 1. J Thromb Haemost 5:804–811

    Google Scholar 

  • Tsurupa G, Yakovlev S, Pechik I, Lamanuzzi LB, Angles-Cano E, Medved L (2006) Interaction of fibrin(ogen) with apolipoprotein(a): further characterization and identification of a novel lysine-dependent apolipoprotein(a)-binding site within the gamma chain 287-411 region. BioChemistry 45:10624–10632

    Google Scholar 

  • Walker ID, Davidson JF, Hutton I (1976) »Fibrinolytic potential«: the response to a 5 minute venous occlusion test. Thromb Res 8:629–638

    Google Scholar 

  • Weisel JW, Litvinov RI (2008) The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Hematol Agents Med Chem 6:161–180

    Google Scholar 

  • Wilhelm SE, Lounes KC, Lord ST (2004) Investigation of residues in the fibrin(ogen) gamma chain involved in tissue plasminogen activator binding and plasminogen activation. Blood Coagul Fibrinolysis 15:451–461

    Google Scholar 

  • Wiman B, Chmielewska J, Ranby M (1984) Inactivation of tissue plasminogen activator in plasma. Demonstration of a complex with a new rapid inhibitor. J Biol Chem 259:3644–3647

    Google Scholar 

  • Young KC, Shi GY, Wu DH, Chang LC, Chang BI, Ou CP, Wu HL (1998) Plasminogen activation by streptokinase via a unique mechanism. J Biol Chem 273:3110–3116

    Google Scholar 

  • Zeng B, Bruce D, Kril J, Ploplis V, Freedman B, Brieger D (2002) Influence of plasminogen deficiency on the contribution of polymorphonuclear leucocytes to fibrin/ogenolysis: studies in plasminogen knock-out mice. Thromb Haemost 88:805–810

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, A.H., Riess, H., Dempfle, CE. (2014). Physiologie und Pathophysiologie. In: Nüllen, H., Noppeney, T., Diehm, C. (eds) VTE - Venöse Thromboembolien. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21496-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21496-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21495-0

  • Online ISBN: 978-3-642-21496-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics