Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6789))

Abstract

Quality Space Theory is a holistic model of qualitative states. On this view, individual mental qualities are defined by their locations in a space of relations, which reflects a similar space of relations among perceptible properties. This paper offers an extension of Quality Space Theory to temporal perception. Unconscious segmentation of events, the involvement of early sensory areas, and asymmetries of dominance in multi-modal perception of time are presented as evidence for the view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kant, I.: Critique of Pure Reason. St. Martins Press, New York (1965/1781)

    Google Scholar 

  2. Husserl, E.: On the Phenomenology of the Consciousness of Internal Time (1893-1917). Kluwer, Dordrecht (1990/1928)

    Google Scholar 

  3. Bergson, H.: Time and Free Will: An Essay on the Immediate Data of Consciousness. Dover, Mineola NY (2001/1913)

    Google Scholar 

  4. Dretske, F.: Experience as Representation. Philosophical Issues 13(1), 67–82 (2003)

    Article  Google Scholar 

  5. Dennett, D.C., Kinsbourne, M.: Time and the Observer: The Where and When of Consciousness in the Brain. Behavioral and Brain Sciences 15, 183–201 (1992)

    Article  Google Scholar 

  6. Block, N.: Consciousness and Cognitive Access. Proceedings of the Aristotelian Society 108 (1pt3), 289–317 (2008)

    Article  Google Scholar 

  7. Sellars, W.: Empiricism and the Philosophy of Mind. Harvard University Press, Cambridge MA (1997/1956)

    Google Scholar 

  8. Rosenthal, D.M.: Consciousness and Mind. Oxford University Press, USA (2005)

    Google Scholar 

  9. Broadbent, A.D.: A Critical Review of the Development of the CIE1931 RGB Color-matching Functions. Color Research and Application 29(4), 267–272 (2004)

    Article  Google Scholar 

  10. Meehan, D.B.: Qualitative Character and Sensory Representation. Consciousness and Cognition 11(4), 630–641 (2002)

    Article  Google Scholar 

  11. Meehan, D.B.: The Qualitative Character of Spatial Perception. Doctoral Thesis, City University of New York (2007)

    Google Scholar 

  12. Rammsayer, T., Ulrich, R.: Counting Models of Temporal Discrimination. Psychonomic Bulletin and Review 8(2), 270–277 (2001)

    Article  Google Scholar 

  13. Ivry, R.B.: The Representation of Temporal Information in Perception and Motor Control. Current Opinion in Neuropbiology 6(6), 851–857 (1996)

    Article  Google Scholar 

  14. Miall, R.C.: The Storage of Time IntervalsUsing Oscillating Neurons. Neural Computation 1(3), 359–371 (1989)

    Article  Google Scholar 

  15. Wearden, J.H., Edwards, R., Fakhri, M., Percival, A.: Why ’sounds are judged longer than lights’: Application of a Model of the Internal Clock in Humans. Quarterly Journal of Experimental Psychology 51B, 97–120 (1998)

    Google Scholar 

  16. Creelman, D.C.: Human Discrimination of Auditory Duration. The Journal of the Acoustical Society of America 34(5), 582–593 (1962)

    Article  Google Scholar 

  17. Treisman, M., Faulkner, A., Naish, P.L.N., Brogan, D.: The Internal Clock: Evidence for a Temporal Oscillator Underlying Time Perception with Some Estimates of its Characteristic Frequency. Perception 19(6), 705–743 (1990)

    Article  Google Scholar 

  18. Gibbon, J.: Scalar Expectancy Theory and Weber’s Law in Animal Timing. Psychological Review 84, 279–325 (1977)

    Article  Google Scholar 

  19. Mauk, M.D., Buonomano, D.V.: The Neural Basis of Temporal Processing. Annual Review of Neuroscience 27, 307–340 (2004)

    Article  Google Scholar 

  20. Karmarkar, U.R., Buonomano, D.V.: Timing in the Absence of Clocks: Encoding Time in Neural Network States. Neuron 53(3), 427–438 (2007)

    Article  Google Scholar 

  21. Pariyadath, V., Eagleman, D.M.: The Effect of Predictability on Subjective Duration. PLoS One 2(11), e1264 (2007)

    Article  Google Scholar 

  22. Pöppel, E.: A Hierarchical Model of Temporal Perception. Trends in Cognitive Sciences 1(2), 56–61 (1997)

    Article  Google Scholar 

  23. von SteinbĂŒchel, N., Wittmann, M., Pöppel, E.: Timing in Perceptual and Motor Tasks after Disturbances of the Brain. Advances in Psychology 115, 281–304 (1996)

    Article  Google Scholar 

  24. Pöppel, E.: Lost in Time: A Historical Frame, Elementary Processing Units and the 3-Second Window. Acta Neurobiologiae Experimentalis 64(3), 295–302 (2004)

    Google Scholar 

  25. Pöppel, E.: Temporal Mechanisms in Perception. International Review of Neurobiology 37, 185–202 (1994)

    Article  Google Scholar 

  26. Pöppel, E.: Taxonomy of the Subjective: an Evolutionary Perspective. In: Brown, J.W. (ed.) Neuropsychology of Visual Perecption, pp. 219–232. Lawrence Erlbaum Associates, Hillsdale NJ (1989)

    Google Scholar 

  27. Zacks, J.M., Braver, T.S., Sheridan, M.A., Donaldson, D.I., Snyder, A.Z., Ollinger, J.M., Buchner, R.L., Raichle, M.E.: Human Brain Activity Time-locked to Perceptual Event Boundaries. Nature Neuroscience 4(6), 651–655 (2001)

    Article  Google Scholar 

  28. Tong, F.: Brain at Work: Play by Play. Nature 4(6), 560–562 (2001)

    Google Scholar 

  29. Muckli, L., Kriegeskorte, N., Lanfermann, H., Zanella, F.E., Singer, W., Goebel, R.: Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of Perceptual Switches and States. Journal of Neuroscience, 1–5 (2002)

    Google Scholar 

  30. Muckli, L., Kohler, A., Kriegeskorte, N., Singer, W.: Primary Visual Cortex Activity Along the Apparent-Motion Trace Reflects Illusory Perception. PLoS Biology 3(8), 1501–1510 (2005)

    Article  Google Scholar 

  31. Sterzer, P., Haynes, J., Reesa, G.: Primary Visual Cortex Activation on the Path of Apparent Motion is Mediated by Feedback from hMT+/V5. NeuroImage 32(3), 1308–1316 (2006)

    Article  Google Scholar 

  32. Matsuyoshi, D., Hirose, N., Mima, T., Fukuyama, H., Osaka, H.: Repetitive Transcranial Magnetic Stimulation of Human Mt+ Reduces Apparent Motion Perception. Neuroscience Letters 429(2-3), 131–135 (2007)

    Article  Google Scholar 

  33. Rees, G.: The Anatomy of Blindsight. Brain 131(6), 1414–1415 (2008)

    Article  Google Scholar 

  34. Azzopardi, P., Cowey, A.: Motion Discrimination in Cortically Blind Patients. Brain 124(1), 30–46 (2001)

    Article  Google Scholar 

  35. Goebel, R., Muckli, L., Zanella, F.E., Singer, W., Stoerig, P.: Sustained Extrastriate Cortical Activation without Visual Awareness Revealed by fMRI Studies of Hemianopic Patients. Vision Research 41(10-11), 1459–1474 (2001)

    Article  Google Scholar 

  36. Azzopardi, P., Hock, H.S.: Illusory Motion Perception in Blindsight. Proceedings of the National Academy of Sciences 108(2), 876–881 (2011)

    Article  Google Scholar 

  37. Pantev, C., Bertrand, O., Eulitz, C., Verkindt, C., Hampson, S., Schuierer, G., Elbert, T.: Specific Tonotopic Organizations of Different Areas of the Human Auditory Cortex Revealed by Simultaneous Magnetic and Electric Recordings. Electroencephalography and Clinical Neurophysiology 94(1), 26–40 (1995)

    Article  Google Scholar 

  38. Penfield, W., Rasmussen, T.: The Cerebral Cortex of Man: A Clinical Study of Localization of Function. Macmillan, New York (1950)

    Google Scholar 

  39. Verhagen, J.V.: The Neurocognitive Bases of Human Multimodal Food Perception: Consciousness. Brain Research Reviews 53, 271–286 (2007)

    Article  Google Scholar 

  40. Vroomen, J., Keetels, M.: Perception of Intersensory Synchrony: A Tutorial Review. Attention, Perception, and Psychophysics 72(4), 871–884 (2010)

    Article  Google Scholar 

  41. Kopinska, A., Harris, L.R.: Simultaneity Constancy. Perception 33(9), 1049–1060 (2004)

    Article  Google Scholar 

  42. Dixon, N.F., Spitz, L.: The Detection of Auditory Visual Desychrony. Perception 9(6), 719–721 (1980)

    Article  Google Scholar 

  43. Harrar, V., Harris, L.R.: Simultaneity Constancy: Detecting Events with Touch and Sound. Experimental Brain Research 166(3), 465–473 (2005)

    Article  Google Scholar 

  44. Harrar, V., Harris, L.R.: The Effect of Exposure to Asynchronous Audio, Visual, and Tactile Stimulus Combinations on the Perception of Simultaneity. Experimental Brain Research 186(4), 517–524 (2008)

    Article  Google Scholar 

  45. Hanson, J.V.M., Heron, J., Whitaker, D.: Recalibration of Perceived Time Across Sensory Modalities. Experimental Brain Research 185(2), 347–352 (2008)

    Article  Google Scholar 

  46. Sherman, S.M., Guillery, R.W.: Exploring the Thalamus. Academic Press, San Diego (2001)

    Google Scholar 

  47. Sherman, S.M., Guillery, R.W.: The Role of the Thalamus in the Flow of Information to the Cortex. Philosophical Transactions of the Royal Society London B 357, 1695–1708 (2002)

    Article  Google Scholar 

  48. Bridge, H., Thomas, O., Jbabdi, S., Cowey, A.: Changes in Connectivity after Visual Cortical Brain Damage Underlie Altered Visual Function. Brain 131, 1433–1444 (2008)

    Article  Google Scholar 

  49. O’Connor, D.H., Fukui, M.M., Pinsk, M.A., Kastner, S.: Attention Modulates Responses in the Human Lateral Geniculate Nucleus. Nature Neuroscience 5, 1203–1209 (2002)

    Article  Google Scholar 

  50. Fendrich, R., Corballis, P.M.: The Temporal Cross-Capture of Audition and Vision. Perception and Psychophysics 63(4), 719–725 (2001)

    Article  Google Scholar 

  51. Bertelson, P., Aschersleben, G.: Temporal Ventriloquism: Crossmodal Interaction on the Time Dimension. 1. Evidence from Auditory-Visual Temporal Order Judgment. International Journal of Psychophysiology 50(1-2), 147–155 (2003)

    Google Scholar 

  52. Shams, L.Y., Kamitani, Y., Shimojo, S.: Illusions: What You See is What you Hear. Nature 408(6814), 788 (2000)

    Article  Google Scholar 

  53. Van Wassenhove, V., Buonomano, D., Shimojo, S., Shams, L.: Distortions of Subjective Time Perception Within and Across Senses. PLoS One 3(1), 1–13 (2008)

    Google Scholar 

  54. New, J.J., Scholl, B.J.: Subjective Time Dilation: Spatially Local, Object-based, or a Global Visual Experience? Journal of Vision 9(2), 1–11 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klincewicz, M. (2011). Quality Space Model of Temporal Perception. In: Vatakis, A., Esposito, A., Giagkou, M., Cummins, F., Papadelis, G. (eds) Multidisciplinary Aspects of Time and Time Perception. Lecture Notes in Computer Science(), vol 6789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21478-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21478-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21477-6

  • Online ISBN: 978-3-642-21478-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics