Advertisement

Control of Stress Tolerance in Bacterial Host Organisms for Bioproduction of Fuels

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 22)

Abstract

The need for renewable alternative sources of liquid biofuels has lead to tremendous interest in the conversion of lignocellulosic biomass to fuel compounds via microbial routes. A key aspect of the research involves the engineering of robust and stable microbial host platforms that can produce these compounds at high titer. Impact on growth caused by inhibitory compounds in the deconstructed biomass and accumulation of toxic metabolic intermediates and final product are bottlenecks that severely limit product titers. This chapter reviews known sources of toxicity arising from various aspects of this process and discusses native and heterologous mechanisms of microbial stress response and defense that can be used to engineer better production hosts.

Keywords

Lignocellulosic Biomass Select Reaction Monitoring Fatty Acid Ethyl Ester Microbial Host Furan Aldehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

References

  1. Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867CrossRefPubMedGoogle Scholar
  2. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568CrossRefPubMedGoogle Scholar
  3. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267CrossRefPubMedGoogle Scholar
  4. Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948PubMedGoogle Scholar
  5. Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA, Arkin AP, Keasling JD (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4:1CrossRefPubMedGoogle Scholar
  6. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588PubMedGoogle Scholar
  7. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35CrossRefPubMedGoogle Scholar
  8. Aono R, Kobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl Environ Microbiol 63:3637–3642PubMedGoogle Scholar
  9. Arnold CN, McElhanon J, Lee A, Leonhart R, Siegele DA (2001) Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol 183:2178–2186CrossRefPubMedGoogle Scholar
  10. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311CrossRefPubMedGoogle Scholar
  11. Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC (2009) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657CrossRefPubMedGoogle Scholar
  12. Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19CrossRefPubMedGoogle Scholar
  13. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861PubMedGoogle Scholar
  14. Balan V, Sousa LD, Chundawat SPS, Marshall D, Sharma LN, Chambliss CK, Dale BE (2009) Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol Prog 25:365–375CrossRefPubMedGoogle Scholar
  15. Banerjee N, Bhatnagar RLV (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 11:226–228CrossRefGoogle Scholar
  16. Barbosa MF, Yomano LP, Ingram LO (1994) Cloning, sequencing and expression of stress genes from the ethanol-producing bacterium Zymomonas mobilis: the groESL operon. Gene 148:51–57CrossRefPubMedGoogle Scholar
  17. Baumgartner JW, Kim C, Brissette RE, Inouye M, Park C, Hazelbauer GL (1994) Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ. J Bacteriol 176:1157–1163PubMedGoogle Scholar
  18. Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180CrossRefPubMedGoogle Scholar
  19. Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76:1212–1223CrossRefPubMedGoogle Scholar
  20. Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26CrossRefPubMedGoogle Scholar
  21. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297CrossRefPubMedGoogle Scholar
  22. Brynildsen MP, Liao JC (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:277CrossRefPubMedGoogle Scholar
  23. Burgard AP, Van Dien SJ (2007) Methods and organisms for the growth-coupled production of succinate. US Patent 2007/0111294 A1Google Scholar
  24. Burgard AP, Van Dien SJ (2008) Methods and organisms for the growth-coupled production of succinate. Patent EP1937821A2Google Scholar
  25. Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112:30–35Google Scholar
  26. Busch A, Lacal J, Martos A, Ramos JL, Krell T (2007) Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci USA 104:13774–13779CrossRefPubMedGoogle Scholar
  27. Cai SJ, Inouye M (2002) EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem 277:24155–24161CrossRefPubMedGoogle Scholar
  28. Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81:89–98CrossRefPubMedGoogle Scholar
  29. Carey VC, Ingram LO (1983) Lipid composition of Zymomonas mobilis: effects of ethanol and glucose. J Bacteriol 154:1291–1300PubMedGoogle Scholar
  30. Chemier JA, Fowler ZL, Koffas MA, Leonard E (2009) Trends in microbial synthesis of natural products and biofuels. Adv Enzymol Relat Areas Mol Biol 76:151–217PubMedGoogle Scholar
  31. Cho DH, Lee YJ, Um Y, Sang BI, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 83:1035–1043CrossRefPubMedGoogle Scholar
  32. Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86:1155–1164CrossRefPubMedGoogle Scholar
  33. Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20:307–315CrossRefPubMedGoogle Scholar
  34. Cristani M, D’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D (2007) Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem 55:6300–6308CrossRefPubMedGoogle Scholar
  35. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRefPubMedGoogle Scholar
  36. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759CrossRefPubMedGoogle Scholar
  37. Dunlop MJ, Keasling JD, Mukhopadhyay A (2010) A model for improving microbial biofuel production using a synthetic feedback loop. Syst Synth Biol 4:95–104CrossRefPubMedGoogle Scholar
  38. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4:e5553CrossRefPubMedGoogle Scholar
  39. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3:e3647CrossRefPubMedGoogle Scholar
  40. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRefPubMedGoogle Scholar
  41. Feist CF, Hegeman GD (1969) Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. J Bacteriol 100:869–877PubMedGoogle Scholar
  42. Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–113CrossRefPubMedGoogle Scholar
  43. Fortman JLCS, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381CrossRefPubMedGoogle Scholar
  44. Franden MA, Pienkos PT, Zhang M (2009) Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J Biotechnol 144:259–267CrossRefPubMedGoogle Scholar
  45. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRefPubMedGoogle Scholar
  46. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21CrossRefPubMedGoogle Scholar
  47. Gao R, Lynn DG (2005) Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol 187:2182–2189CrossRefPubMedGoogle Scholar
  48. Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154CrossRefPubMedGoogle Scholar
  49. Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons EL, Payne J, Rhodes MJ, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273:4163–4170CrossRefPubMedGoogle Scholar
  50. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA III, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56CrossRefPubMedGoogle Scholar
  51. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345CrossRefPubMedGoogle Scholar
  52. Gill RT, Wildt S, Yang YT, Ziesman S, Stephanopoulos G (2002) Genome-wide screening for trait conferring genes using DNA microarrays. Proc Natl Acad Sci USA 99:7033–7038CrossRefPubMedGoogle Scholar
  53. Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623CrossRefPubMedGoogle Scholar
  54. Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349CrossRefPubMedGoogle Scholar
  55. Grandvalet C, Assad-Garcia JS, Chu-Ky S, Tollot M, Guzzo J, Gresti J, Tourdot-Marechal R (2008) Changes in membrane lipid composition in ethanol- and acid-adapted Oenococcus oeni cells: characterization of the cfa gene by heterologous complementation. Microbiology 154:2611–2619CrossRefPubMedGoogle Scholar
  56. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353CrossRefPubMedGoogle Scholar
  57. Gutierrez T, Buszko ML, Ingram LO, Preston JF (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol 98–100:327–340CrossRefPubMedGoogle Scholar
  58. Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1–an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164CrossRefPubMedGoogle Scholar
  59. Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuels 24:267–273CrossRefGoogle Scholar
  60. Heipieper HJ, de Bont JA (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444PubMedGoogle Scholar
  61. Herrmann H, Muller C, Schmidt I, Mahnke J, Petruschka L, Hahnke K (1995) Localization and organization of phenol degradation genes of Pseudomonas putida strain H. Mol Gen Genet 247:240–246CrossRefPubMedGoogle Scholar
  62. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210CrossRefPubMedGoogle Scholar
  63. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRefPubMedGoogle Scholar
  64. Holms WH, Bennett PM (1971) Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate. J Gen Microbiol 65:57–68CrossRefPubMedGoogle Scholar
  65. Horvath IS, Taherzadeh MJ, Niklasson C, Liden G (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75:540–549CrossRefPubMedGoogle Scholar
  66. Hoschle B, Jendrossek D (2005) Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiology 151:2277–2283CrossRefPubMedGoogle Scholar
  67. Huertas MJ, Duque E, Molina L, Rossello-Mora R, Mosqueda G, Godoy P, Christensen B, Molin S, Ramos JL (2000) Tolerance to sudden organic solvent shocks by soil bacteria anal characterization of Pseudomonas putida strains isolated from toluene polluted sites. Environ Sci Technol 34:3395–3400CrossRefGoogle Scholar
  68. Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9:305–319CrossRefPubMedGoogle Scholar
  69. Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214CrossRefPubMedGoogle Scholar
  70. Ingram LO, Vreeland NS (1980) Differential effects of ethanol and hexanol on the Escherichia coli cell envelope. J Bacteriol 144:481–488PubMedGoogle Scholar
  71. Ingram LO, Vreeland NS, Eaton LC (1980) Alcohol tolerance in Escherichia coli. Pharmacol Biochem Behav 13(Suppl 1):191–195CrossRefPubMedGoogle Scholar
  72. Island MD, Kadner RJ (1993) Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J Bacteriol 175:5028–5034PubMedGoogle Scholar
  73. Iuchi S, Matsuda Z, Fujiwara T, Lin EC (1990) The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol Microbiol 4:715–727CrossRefPubMedGoogle Scholar
  74. Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–261PubMedGoogle Scholar
  75. Jeffries TW, Jin YS (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268CrossRefPubMedGoogle Scholar
  76. Joachimsthal EL, Rogers PL (2000) Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl Biochem Biotechnol 84–86:343–356CrossRefPubMedGoogle Scholar
  77. Jönsson LJ, Palmqvist E, Nilvebrant N-O, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697CrossRefGoogle Scholar
  78. Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700PubMedGoogle Scholar
  79. Kang YS, Lee Y, Jung H, Jeon CO, Madsen EL, Park W (2007) Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1. Microbiology 153:3246–3254CrossRefPubMedGoogle Scholar
  80. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76CrossRefPubMedGoogle Scholar
  81. Keasling JD, Chou H (2008) Metabolic engineering delivers next-generation biofuels. Nat Biotechnol 26:298–299CrossRefPubMedGoogle Scholar
  82. Keweloh H, Diefenbach R, Rehm HJ (1991) Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Arch Microbiol 157:49–53CrossRefPubMedGoogle Scholar
  83. Kieboom J, Dennis JJ, de Bont JA, Zylstra GJ (1998a) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91CrossRefPubMedGoogle Scholar
  84. Kieboom J, Dennis JJ, Zylstra GJ, de Bont JA (1998b) Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J Bacteriol 180:6769–6772PubMedGoogle Scholar
  85. Kim JM, Marshall MR, Cornell JA, Preston JF, Wei CI (1995) Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. J Food Sci 60:1364CrossRefGoogle Scholar
  86. Kim K, Lee S, Lee K, Lim D (1998) Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol 180:3692–3696PubMedGoogle Scholar
  87. Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL (2001) Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183:6466–6477CrossRefPubMedGoogle Scholar
  88. Kishii R, Falzon L, Yoshida T, Kobayashi H, Inouye M (2007) Structural and functional studies of the HAMP domain of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli. J Biol Chem 282:26401–26408CrossRefPubMedGoogle Scholar
  89. Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G (2007) Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol 25:417–424CrossRefPubMedGoogle Scholar
  90. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRefPubMedGoogle Scholar
  91. Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455CrossRefPubMedGoogle Scholar
  92. Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA 107:4919–4924CrossRefPubMedGoogle Scholar
  93. Koschorreck K, Schmid RD, Urlacher VB (2009) Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis. BMC Biotechnol 9:12. doi: 1472-6750-9-12 CrossRefPubMedGoogle Scholar
  94. Kumita H, Yamada S, Nakamura H, Shiro Y (2003) Chimeric sensory kinases containing O2 sensor domain of FixL and histidine kinase domain from thermophile. Biochim Biophys Acta 1646:136–144CrossRefPubMedGoogle Scholar
  95. Lasko DR, Zamboni N, Sauer U (2000) Bacterial response to acetate challenge: a comparison of tolerance among species. Appl Microbiol Biotechnol 54:243–247CrossRefPubMedGoogle Scholar
  96. Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci USA 106:1368–1373CrossRefPubMedGoogle Scholar
  97. Lau PC, Wang Y, Patel A, Labbe D, Bergeron H, Brousseau R, Konishi Y, Rawlings M (1997) A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci USA 94:1453–1458CrossRefPubMedGoogle Scholar
  98. Lawford HG, Rousseau JD (1992) Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli. Appl Biochem Biotechnol 34–35:185–204CrossRefPubMedGoogle Scholar
  99. Lawford HG, Rousseau JD (2003) Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis. Appl Biochem Biotechnol 105–108:457–469CrossRefPubMedGoogle Scholar
  100. Lee IY, Volm TG, Rosazza JPN (1998) Decarboxylation of ferulic acid to 4-vinylguaiacol by Bacillus pumilus in aqueous-organic solvent two-phase systems. Enzyme Microb Technol 23:261–266CrossRefGoogle Scholar
  101. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24CrossRefPubMedGoogle Scholar
  102. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563CrossRefPubMedGoogle Scholar
  103. Lee YW, Jin S, Sim WS, Nester EW (1995) Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 92:12245–12249CrossRefPubMedGoogle Scholar
  104. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2009) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906CrossRefPubMedGoogle Scholar
  105. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256CrossRefPubMedGoogle Scholar
  106. Lin YP, Zhang MQ, Chen BQ (2005) Research progress of ethanologenic Zymomonas mobilis. Wei Sheng Wu Xue Bao 45:472–477PubMedGoogle Scholar
  107. Liu ZL, Moon J (2009) A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1–10Google Scholar
  108. Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301CrossRefPubMedGoogle Scholar
  109. Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282:233–244CrossRefPubMedGoogle Scholar
  110. Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460CrossRefPubMedGoogle Scholar
  111. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352Google Scholar
  112. Liu ZL, Moon J, Andersh AJ, Slininger PJ, Weber S (2008) Multiple gene mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753Google Scholar
  113. Loffeld B, Keweloh H (1996) cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 31:811–815CrossRefPubMedGoogle Scholar
  114. Lohrke SM, Yang H, Jin S (2001) Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. J Bacteriol 183:3704–3711CrossRefPubMedGoogle Scholar
  115. Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci USA 101:13318–13323CrossRefPubMedGoogle Scholar
  116. Martin KV, Picataggio S, Roessler P, Verruto J, Watts K (2007) Dimethyl Octane as an advanced biofuel. Patent WO/2009/064910Google Scholar
  117. Martin KV, Picataggio S, Roessler P, Verruto J, Watts K (2009) Dimethyloctane as an advanced biofuel. Patent WO/2009/064910Google Scholar
  118. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802CrossRefPubMedGoogle Scholar
  119. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938CrossRefPubMedGoogle Scholar
  120. Michel GP, Starka J (1986) Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J Bacteriol 165:1040–1042PubMedGoogle Scholar
  121. Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO (2009a) Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 75:6132–6141CrossRefPubMedGoogle Scholar
  122. Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009b) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75:4315–4323CrossRefPubMedGoogle Scholar
  123. Mitchell RJ, Yun-Jie Lee, Sun-Mi Lee, Joo-Myung Ahn, Dae Haeng Cho, Youngsoon Um, Yong Hwan Kim, Man Bock Gu, Sang. B-I (2008) Toxic response of Clostridium beijerinckii and Escherichia coli to lignin hydrolysate-related compounds. Paper presented at the AICHE. http://aiche.confex.com/aiche/s08/techprogram/P108620.HTM. Accessed on 30 July 2011
  124. Moken MC, McMurry LM, Levy SB (1997) Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob Agents Chemother 41:2770–2772PubMedGoogle Scholar
  125. Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19:228–234CrossRefPubMedGoogle Scholar
  126. Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95:684–691CrossRefPubMedGoogle Scholar
  127. Ng LC, Shingler V, Sze CC, Poh CL (1994) Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Gene 151:29–36CrossRefPubMedGoogle Scholar
  128. Okusu H, Ma D, Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178:306–308PubMedGoogle Scholar
  129. Osman YA, Ingram LO (1985) Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol 164:173–180PubMedGoogle Scholar
  130. Palmqvist E, Hahn-Hagerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24CrossRefGoogle Scholar
  131. Palmqvist E, Hahn-Hagerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  132. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429CrossRefPubMedGoogle Scholar
  133. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids - advantages beyond green technology. Curr Opin Biotechnol 14:432–437CrossRefPubMedGoogle Scholar
  134. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162CrossRefPubMedGoogle Scholar
  135. Perez JM, Arenas FA, Pradenas GA, Sandoval JM, Vasquez CC (2008) Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283:7346–7353CrossRefPubMedGoogle Scholar
  136. Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF, Liden G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464CrossRefPubMedGoogle Scholar
  137. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032CrossRefPubMedGoogle Scholar
  138. Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PC (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 5:1309–1327CrossRefPubMedGoogle Scholar
  139. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762CrossRefGoogle Scholar
  140. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207CrossRefPubMedGoogle Scholar
  141. Polen T, Rittmann D, Wendisch VF, Sahm H (2003) DNA Microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774CrossRefPubMedGoogle Scholar
  142. Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4(7):e6441. doi: 10.1371/journal.pone.0006441 CrossRefPubMedGoogle Scholar
  143. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489CrossRefPubMedGoogle Scholar
  144. Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRefPubMedGoogle Scholar
  145. Ramos JL, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180:3323–3329PubMedGoogle Scholar
  146. Ranatunga TD, Jervis J, Helm RF, McMillan JD, Hatzis C (1997) Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation. Appl Biochem Biotechnol 67:185–198CrossRefGoogle Scholar
  147. Rogers PL, Goodman AE, Heyes RH (1984) Zymomonas ethanol fermentations. Microbiol Sci 1:133–136PubMedGoogle Scholar
  148. Roling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548CrossRefPubMedGoogle Scholar
  149. Ruhl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656CrossRefPubMedGoogle Scholar
  150. Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD (2010) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76:1935–1945CrossRefPubMedGoogle Scholar
  151. Ryder JA (2009) Jet fuel compositions. Patent 12/393,024Google Scholar
  152. Sakamoto T, Murata N (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol 5:208–210CrossRefPubMedGoogle Scholar
  153. Salis H, Tamsir A, Voigt C (2009) Engineering bacterial signals and sensors. Contrib Microbiol 16:194–225CrossRefPubMedGoogle Scholar
  154. Sariaslani FS (2007) Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol 61:51–69CrossRefPubMedGoogle Scholar
  155. Sauer M, Marx H, Mattanovich D (2008) Microbial production of 1,3-propanediol. Recent Pat Biotechnol 2:191–197CrossRefPubMedGoogle Scholar
  156. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913CrossRefPubMedGoogle Scholar
  157. Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. doi: 1754-1611-2-5 CrossRefPubMedGoogle Scholar
  158. Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedGoogle Scholar
  159. Silveira MG, Baumgartner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755CrossRefPubMedGoogle Scholar
  160. Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol 9:242CrossRefPubMedGoogle Scholar
  161. Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75CrossRefPubMedGoogle Scholar
  162. Smolke CD (2009) Gene expression tools for metabolic pathway engineering. In: Smolke CD (ed) The metabolic pathway engineering handbook: tools and applications. CRC Press, San DiegoGoogle Scholar
  163. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211CrossRefPubMedGoogle Scholar
  164. Sommer MO, Church GM, Dantas G (2010) A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Mol Syst Biol 6:360. doi: msb201016 CrossRefPubMedGoogle Scholar
  165. Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821CrossRefPubMedGoogle Scholar
  166. Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105CrossRefPubMedGoogle Scholar
  167. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562CrossRefPubMedGoogle Scholar
  168. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215CrossRefPubMedGoogle Scholar
  169. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefPubMedGoogle Scholar
  170. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefPubMedGoogle Scholar
  171. Tittabutr P, Payakapong W, Teaumroong N, Boonkerd N, Singleton PW, Borthakur D (2006) A histidine kinase sensor protein gene is necessary for induction of low pH tolerance in Sinorhizobium sp. strain BL3. Antonie Leeuwenhoek 89:125–134CrossRefPubMedGoogle Scholar
  172. Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018CrossRefPubMedGoogle Scholar
  173. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965CrossRefPubMedGoogle Scholar
  174. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478CrossRefPubMedGoogle Scholar
  175. Tyo KE, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–765CrossRefPubMedGoogle Scholar
  176. Underwood SA, Buszko ML, Shanmugam KT, Ingram LO (2004) Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol 70:2734–2740CrossRefPubMedGoogle Scholar
  177. Utsumi R, Brissette RE, Rampersaud A, Forst SA, Oosawa K, Inouye M (1989) Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245:1246–1249CrossRefPubMedGoogle Scholar
  178. van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630PubMedGoogle Scholar
  179. Van Dyk TK (2008) Bacterial efflux transport in biotechnology. Adv Appl Microbiol 63:231–247CrossRefPubMedGoogle Scholar
  180. Van Dyk TK, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J Bacteriol 186:7196–7204CrossRefPubMedGoogle Scholar
  181. Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72:3653–3661CrossRefPubMedGoogle Scholar
  182. Verhoef S, Wierckx N, Westerhof RG, de Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936CrossRefPubMedGoogle Scholar
  183. Wackett LP (2008) Biomass to fuels via microbial transformations. Curr Opin Chem Biol 12:187–193CrossRefPubMedGoogle Scholar
  184. Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, Nygren PA, van Wijk KJ, de Gier JW (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550CrossRefPubMedGoogle Scholar
  185. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105:14371–14376CrossRefPubMedGoogle Scholar
  186. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedGoogle Scholar
  187. Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4:25. doi: 1475-2859-4-25 CrossRefPubMedGoogle Scholar
  188. Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C (2009) Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4(9):e7002. doi: 10.1371/journal.pone.0007002 CrossRefPubMedGoogle Scholar
  189. Wierckx N, Koopman F, Bandounas L, de Winde JH, Ruijssenaars HJ (2010) Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate. Microb Biotechnol 3:336–343CrossRefPubMedGoogle Scholar
  190. Wright JS III, Kadner RJ (2001) The phosphoryl transfer domain of UhpB interacts with the response regulator UhpA. J Bacteriol 183:3149–3159CrossRefPubMedGoogle Scholar
  191. Wright JS, Olekhnovich IN, Touchie G, Kadner RJ (2000) The histidine kinase domain of UhpB inhibits UhpA action at the Escherichia coli uhpT promoter. J Bacteriol 182:6279–6286CrossRefPubMedGoogle Scholar
  192. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN (2009) Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol Prog 25:333–339CrossRefPubMedGoogle Scholar
  193. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138CrossRefPubMedGoogle Scholar
  194. Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210CrossRefPubMedGoogle Scholar
  195. Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33CrossRefPubMedGoogle Scholar
  196. Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530CrossRefPubMedGoogle Scholar
  197. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34CrossRefPubMedGoogle Scholar
  198. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628CrossRefPubMedGoogle Scholar
  199. Zeng A, Biebl H (2010) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–258Google Scholar
  200. Zhang Y, Zhu Y, Li Y (2009) The importance of engineering physiological functionality into microbes. Trends Biotechnol 27:664–672CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Joint BioEnergy InstituteBerkeleyUSA

Personalised recommendations