Mechanisms and Applications of Microbial Solvent Tolerance

Part of the Microbiology Monographs book series (MICROMONO, volume 22)


Biofuels currently feature heavily on scientific, social, and political agenda, and particular focus is reserved for liquid fuels that may act as a substitute or blending agent for petroleum. Many pertinent questions arise when a thorough analysis of the feasibility of liquid alcohol fuels is performed. The focus of this chapter is to analyze our current understanding of the mechanisms that contribute to one of these issues, namely, how can an organism adapt to tolerate usually cytotoxic levels of solvent or alcohol. A considerable volume of research has contributed to our current understanding of the general cellular mechanisms and physiological responses that occur in response to solvent shock. This foundation of knowledge has subsequently allowed a deeper understanding as to adaptive changes responsible for solvent-tolerant phenotypes in mutant progeny. Here we review a number of more common cell responses to solvents, with particular focus on alcohol tolerance, with the aim to place this topic in its correct context as a central theme in understanding the microbial physiology of biofuel production.


Ethanol Tolerance Genome Shuffling Solvent Tolerance Butanol Tolerance Solventogenic Clostridium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+−ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42PubMedCrossRefGoogle Scholar
  2. Alegria GE, Lopez I, Ruiz JI, Saenz J, Fernandez E, Zarazaga M, Dizy M, Torres C, Ruiz-Larrea F (2004) High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett 230:53–61CrossRefGoogle Scholar
  3. Alexandre H, Charpentier C (1994) The plasma-membrane ATPase of Kloeckera-apiculata: purification, characterization and effect of ethanol on activity. World J Microbiol Biotechnol 10:704–708CrossRefGoogle Scholar
  4. Alexandre H, Berlot JP, Charpentier C (1994) Effect of ethanol on membrane fluidity of protoplasts from Saccharomyces-cerevisiae and Kloeckera-apiculata grown with or without ethanol, measured by fluorescence anisotropy. Biotechnol Tech 8:295–300CrossRefGoogle Scholar
  5. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568PubMedCrossRefGoogle Scholar
  6. Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186:1959–1971PubMedCrossRefGoogle Scholar
  7. Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105:1131–1147PubMedGoogle Scholar
  8. Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948PubMedGoogle Scholar
  9. Aono R (1998) Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes. Extremophiles 2:239–248PubMedCrossRefGoogle Scholar
  10. Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944PubMedGoogle Scholar
  11. Aono R, Kobayashi M, Nakajima H, Kobayashi H (1995) A close correlation between improvement of organic solvent tolerance levels and alteration of resistance toward low levels of multiple antibiotics in Escherichia coli. Biosci Biotechnol Biochem 59:213–218PubMedCrossRefGoogle Scholar
  12. Aono R, Negishi T, Aibe K, Inoue A, Horikoshi K (1994) Mapping of organic solvent tolerance gene ostA in Escherichia coli K-12. Biosci Biotechnol Biochem 58:1231–1235PubMedCrossRefGoogle Scholar
  13. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GA (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270PubMedCrossRefGoogle Scholar
  14. Asako H, Kobayashi K, Aono R (1999) Organic solvent tolerance of Escherichia coli is independent of OmpF levels in the membrane. Appl Environ Microbiol 65:294–296PubMedGoogle Scholar
  15. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311PubMedCrossRefGoogle Scholar
  16. Attfield P, Myers D, Hazell B (1997) The importance of stress tolerance to baker’s yeast. Australas Biotechnol 7:149–154Google Scholar
  17. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861PubMedGoogle Scholar
  18. Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163PubMedCrossRefGoogle Scholar
  19. Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73:3061–3068PubMedCrossRefGoogle Scholar
  20. Bordenave S, Goni-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097PubMedCrossRefGoogle Scholar
  21. Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875PubMedCrossRefGoogle Scholar
  22. Buchholz SE, Eveleigh DE (1990) Genetic modification of Zymomonas mobilis. Biotechnol Adv 8:547–581PubMedCrossRefGoogle Scholar
  23. Burchhardt G, Ingram LO (1992) Conversion of xylan to ethanol by ethanologenic strains of Escherichia coli and Klebsiella oxytoca. Appl Environ Microbiol 58:1128–1133PubMedGoogle Scholar
  24. Burdette DS, Jung SH, Shen GJ, Hollingsworth RI, Zeikus JG (2002) Physiological function of alcohol dehydrogenases and long-chain (C-30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol 68:1914–1918PubMedCrossRefGoogle Scholar
  25. Bustard MT, Meeyoo V, Wright PC (2001) Biodegradation of isopropanol in a three phase fixed bed bioreactor: start up and acclimation using a previously-enriched microbial culture. Environ Technol 22:1193–1201PubMedCrossRefGoogle Scholar
  26. Bustard MT, McEvoy EM, Goodwin JA, Burgess JG, Wright PC (2000) Biodegradation of propanol and isopropanol by a mixed microbial consortium. Appl Microbiol Biotechnol 54:424–431PubMedCrossRefGoogle Scholar
  27. Cann AF, Liao JC (2010) Pentanol isomer synthesis in engineered microorganisms. Appl Microbiol Biotechnol 85:893–899PubMedCrossRefGoogle Scholar
  28. Capiro NL, Da Silva ML, Stafford BP, Rixey WG, Alvarez PJ (2008) Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank. Environ Microbiol 10:2236–2244PubMedCrossRefGoogle Scholar
  29. Carman GM, Levin RE (1977) Partial purification and some properties of tyrosine phenol-lyase from Aeromonas phenologenes ATCC 29063. Appl Environ Microbiol 33:192–198PubMedGoogle Scholar
  30. Chen TC, Levin RE (1975) Isolation of Aeromonas sp. ATCC 29063, a phenol-producing organism, from fresh haddock. Appl Microbiol 30:120–122PubMedGoogle Scholar
  31. Chiao JS, Sun ZH (2007) History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol 13:12–14PubMedCrossRefGoogle Scholar
  32. Choi HJ, Kim SA, Kim DW, Moon JY, Jeong YK, Joo WH (2008) Characterization of Pseudomonas sp. BCNU 171 tolerant to organic solvents. J Basic Microbiol 48:473–479PubMedCrossRefGoogle Scholar
  33. Ciesarova Z, Smogrovicova D, Domeny Z (1996) Enhancement of yeast ethanol tolerance by calcium and magnesium. Folia Microbiol 41:485–488CrossRefGoogle Scholar
  34. Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86:419–434PubMedCrossRefGoogle Scholar
  35. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408PubMedCrossRefGoogle Scholar
  36. Da Silveira MG, Golovina EA, Hoekstra FA, Rombouts FM, Abee T (2003) Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 69:5826–5832PubMedCrossRefGoogle Scholar
  37. de Carvalho CC, da Cruz AA, Pons MN, Pinheiro HM, Cabral JM, da Fonseca MM, Ferreira BS, Fernandes P (2004) Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 64:215–222PubMedCrossRefGoogle Scholar
  38. Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 9:3PubMedCrossRefGoogle Scholar
  39. Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154PubMedCrossRefGoogle Scholar
  40. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266PubMedCrossRefGoogle Scholar
  41. Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85:253–263PubMedCrossRefGoogle Scholar
  42. Doan TTP, Carlsson AS, Hamberg M, Bulow L, Stymne S, Olsson P (2009) Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. J Plant Physiol 166:787–796PubMedCrossRefGoogle Scholar
  43. Durre P (2008) Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci 1125:353–362PubMedCrossRefGoogle Scholar
  44. Essam T, Amin MA, El Tayeb O, Mattiasson B, Guieysse B (2010) Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J Hazard Mater 173:783–788PubMedCrossRefGoogle Scholar
  45. Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712PubMedCrossRefGoogle Scholar
  46. Ezeji TC, Qureshi N, Blaschek HP (2004) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4:305–314PubMedCrossRefGoogle Scholar
  47. Ezeji TC, Qureshi N, Blaschek HP (2007a) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227PubMedCrossRefGoogle Scholar
  48. Ezeji TC, Qureshi N, Blaschek HP (2007b) Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J Ind Microbiol Biotechnol 34:771–777PubMedCrossRefGoogle Scholar
  49. Ezeji TC, Karcher PM, Qureshi N, Blaschek HP (2005) Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosyst Eng 27:207–214PubMedCrossRefGoogle Scholar
  50. Faizal I, Dozen K, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Takeda K, Tsunekawa H, Kato J (2005) Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system. J Ind Microbiol Biotechnol 32:542–547PubMedCrossRefGoogle Scholar
  51. Feris K, Mackay D, de Sieyes N, Chakraborty I, Einarson M, Hristova K, Scow K (2008) Effect of ethanol on microbial community structure and function during natural attenuation of benzene, toluene, and o-xylene in a sulfate-reducing aquifer. Environ Sci Technol 42:2289–2294PubMedCrossRefGoogle Scholar
  52. Fiocco D, Capozzi V, Goffin P, Hols P, Spano G (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77:909–915PubMedCrossRefGoogle Scholar
  53. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304PubMedCrossRefGoogle Scholar
  54. Fischer-Romero C, Tindall BJ, Juttner F (1996) Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol 46:183–188PubMedCrossRefGoogle Scholar
  55. Fong JC, Svenson CJ, Nakasugi K, Leong CT, Bowman JP, Chen B, Glenn DR, Neilan BA, Rogers PL (2006) Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles 10:363–372PubMedCrossRefGoogle Scholar
  56. Fralick JA (1996) Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 178:5803–5805PubMedGoogle Scholar
  57. Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750PubMedCrossRefGoogle Scholar
  58. Fujita M, Hanaura Y, Amemura A (1995) Analysis of the rpoD gene encoding the principal sigma factor of Pseudomonas putida. Gene 167:93–98PubMedCrossRefGoogle Scholar
  59. Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77:61–68PubMedCrossRefGoogle Scholar
  60. Georgieva TI, Skiadas IV, Ahring BK (2007a) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98:1161–1170PubMedCrossRefGoogle Scholar
  61. Georgieva TI, Mikkelsen MJ, Ahring BK (2007b) High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Cent Eur J Biol 2:364–377CrossRefGoogle Scholar
  62. Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110PubMedCrossRefGoogle Scholar
  63. Goldemberg J (2006) The ethanol program in Brazil. Environ Res Lett 1:1–10Google Scholar
  64. Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623PubMedCrossRefGoogle Scholar
  65. Heipieper HJ (2005) Adaptation of Escherichia coli to ethanol on the level of membrane fatty acid composition. Appl Environ Microbiol 71: 3388; author reply 3388Google Scholar
  66. Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7PubMedCrossRefGoogle Scholar
  67. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973PubMedCrossRefGoogle Scholar
  68. Herrero AA, Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40:571–577PubMedGoogle Scholar
  69. Hild HM, Stuckey DC, Leak DJ (2003) Effect of nutrient limitation on product formation during continuous fermentation of xylose with Thermoanaerobacter ethanolicus JW200 Fe(7). Appl Microbiol Biotechnol 60:679–686PubMedGoogle Scholar
  70. Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9:305–319PubMedCrossRefGoogle Scholar
  71. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425PubMedGoogle Scholar
  72. Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214PubMedCrossRefGoogle Scholar
  73. Inoue A, Yamamoto M, Horikoshi K (1991) Pseudomonas putida which can grow in the presence of toluene. Appl Environ Microbiol 57:1560–1562PubMedGoogle Scholar
  74. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316PubMedCrossRefGoogle Scholar
  75. Isken S, de Bont JA (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238PubMedCrossRefGoogle Scholar
  76. Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700PubMedGoogle Scholar
  77. Kadokura T, Nakazato A, Takeda M, Chikubu S, Tanimura W (1996) Influence of culture liquid of fungi on alcohol tolerance of yeast. Seibutsu-Kogaku Kais 74:167–170Google Scholar
  78. Keis S, Sullivan JT, Jones DT (2001a) Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium acetobutylicum) NCP 262 chromosome. Microbiology 147:1909–1922PubMedGoogle Scholar
  79. Keis S, Shaheen R, Jones DT (2001b) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii and descriptions of Clostridium saccharoperbutylacetonicum sp nov and Clostridium saccharobutylicum sp nov. Int J Syst Evol Microbiol 51:2095–2103PubMedCrossRefGoogle Scholar
  80. Kim K, Lee S, Lee K, Lim D (1998) Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol 180:3692–3696PubMedGoogle Scholar
  81. Kim Y, Ingram LO, Shanmugam KT (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol 73:1766–1771PubMedCrossRefGoogle Scholar
  82. Klinke HB, Thomsen AB, Ahring BK (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 57:631–638PubMedCrossRefGoogle Scholar
  83. Koukkou AI, Tsoukatos D, Drainas C (1993) Effect of ethanol on the sterols of the fission yeast Schizosaccharomyces-pombe. FEMS Microbiol Lett 111:171–175PubMedCrossRefGoogle Scholar
  84. Lacis LS, Lawford HG (1992) Strain selection in carbon-limited chemostats affects reproducibility of Thermoanaerobacter ethanolicus fermentations. Appl Environ Microbiol 58:761–764PubMedGoogle Scholar
  85. Lawrence A, Jonsson S, Borjesson G (2009) Ethanol, BTEX and microbial community interactions in the E-blend contaminated soil slurry. Int Biodeter Biodegrad 63:654–666CrossRefGoogle Scholar
  86. Lee KY (2008) Viscosity of high-alcohol content fuel blends with water: Subsurface contaminant transport implications. J Hazard Mater 160:94–99PubMedCrossRefGoogle Scholar
  87. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008a) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563PubMedCrossRefGoogle Scholar
  88. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008b) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228PubMedCrossRefGoogle Scholar
  89. Leon R, Garbayo I, Hernandez R, Vigara J, Carlos Vilchez C (2001) Organic solvent toxicity in photoautotrophic unicellular microorganisms. Enzyme Microb Technol 29:173–180CrossRefGoogle Scholar
  90. Li XZ, Poole K (1999) Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can J Microbiol 45:18–22PubMedGoogle Scholar
  91. Li XZ, Zhang L, Poole K (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180:2987–2991PubMedGoogle Scholar
  92. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642PubMedCrossRefGoogle Scholar
  93. Lin YP, Zhang MQ, Chen BQ (2005) Research progress of ethanologenic Zymomonas mobilis. Wei Sheng Wu Xue Bao 45:472–477PubMedGoogle Scholar
  94. Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. N Biotechnol 26:117–121PubMedCrossRefGoogle Scholar
  95. Lovitt RW, Longin R, Zeikus JG (1984) Ethanol production by thermophilic bacteria: physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuricum. Appl Environ Microbiol 48:171–177PubMedGoogle Scholar
  96. Lovitt RW, Shen GJ, Zeikus JG (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170:2809–2815PubMedGoogle Scholar
  97. Luo LH, Seo PS, Seo JW, Heo SY, Kim DH, Kim CH (2009) Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotechnol Lett 31:1867–1871PubMedCrossRefGoogle Scholar
  98. Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol 55:3131–3139PubMedGoogle Scholar
  99. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172PubMedCrossRefGoogle Scholar
  100. McEvoy E, Wright PC, Bustard MT (2004) The effect of high concentration isopropanol on the growth of a solvent tolerant strain of Chlorella vulgaris. Enzyme Microb Technol 35:140–146CrossRefGoogle Scholar
  101. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedCrossRefGoogle Scholar
  102. Mishra P, Kaur S (1991) Lipids as modulators of ethanol tolerance in yeast 34. Appl Microbiol Biotechnol 34:697–702CrossRefGoogle Scholar
  103. Mohagheghi A, Evans K, Chou YC, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98:885–898PubMedCrossRefGoogle Scholar
  104. Mosqueda G, Ramos JL (2000) A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J Bacteriol 182:937–943PubMedCrossRefGoogle Scholar
  105. Mosqueda G, Ramos-Gonzalez MI, Ramos JL (1999) Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232:69–76PubMedCrossRefGoogle Scholar
  106. Munoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267PubMedGoogle Scholar
  107. Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 58:1351–1359PubMedGoogle Scholar
  108. Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energy 32:3238–3247CrossRefGoogle Scholar
  109. Nijkamp K, Westerhof RG, Ballerstedt H, de Bont JA, Wery J (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624PubMedCrossRefGoogle Scholar
  110. Nimcevic D, Gapes JR (2000) The acetone-butanol fermentation in pilot plant and pre-industrial scale. J Mol Microbiol Biotechnol 2:15–20PubMedGoogle Scholar
  111. Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, Ito K (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90:313–320PubMedGoogle Scholar
  112. Oh YS, Bartha R (1997) Construction of a bacterial consortium for the biofiltration of benzene, toluene and xylene emissions. World J Microbiol Biotechnol 13:627–632CrossRefGoogle Scholar
  113. Okumura Y, Koyama J, Takaku H, Satoh H (2001) Influence of organic solvents on the growth of marine microalgae. Arch Environ Contam Toxicol 41:123–128PubMedCrossRefGoogle Scholar
  114. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429PubMedCrossRefGoogle Scholar
  115. Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104PubMedCrossRefGoogle Scholar
  116. Patnaik R (2008) Engineering complex phenotypes in industrial strains. Biotechnol Prog 24:38–47PubMedCrossRefGoogle Scholar
  117. Peng H, Wu G, Shao W (2008a) The aldehyde/alcohol dehydrogenase (AdhE) in relation to the ethanol formation in Thermoanaerobacter ethanolicus JW200. Anaerobe 14:125–127PubMedCrossRefGoogle Scholar
  118. Peng H, Gao Y, Xiao Y (2008b) The high ethanol tolerance in a thermophilic bacterium Anoxybacillus sp. WP06. Sheng Wu Gong Cheng Xue Bao 24:1117–1120PubMedGoogle Scholar
  119. Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008c) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955PubMedCrossRefGoogle Scholar
  120. Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179:4219–4226PubMedGoogle Scholar
  121. Prpich GP, Daugulis AJ (2005) Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two phase partitioning bioreactor. Biodegradation 16:329–339PubMedCrossRefGoogle Scholar
  122. Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916PubMedGoogle Scholar
  123. Ramos JL, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180:3323–3329PubMedGoogle Scholar
  124. Ramos JL, Duque E, Rodriguez-Herva JJ, Godoy P, Haidour A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890PubMedCrossRefGoogle Scholar
  125. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768PubMedCrossRefGoogle Scholar
  126. Ramos-Gonzalez MI, Ben-Bassat A, Campos MJ, Ramos JL (2003) Genetic engineering of a highly solvent-tolerant Pseudomonas putida strain for biotransformation of toluene to p-hydroxybenzoate. Appl Environ Microbiol 69:5120–5127PubMedCrossRefGoogle Scholar
  127. Rao SC, Jones LP (2004) Formation of higher alcohols and phenol by strains of Zymomonas sp. Acta Biotechnol 7:209–219CrossRefGoogle Scholar
  128. Rodriguez-Herva JJ, Garcia V, Hurtado A, Segura A, Ramos JL (2007) The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environ Microbiol 9:1550–1561PubMedCrossRefGoogle Scholar
  129. Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288PubMedGoogle Scholar
  130. Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973PubMedCrossRefGoogle Scholar
  131. San Martin R, Bushell D, Leak DJ, Hartley BS (1992) Development of a synthetic medium for continuous anaerobic growth and ethanol production with a lactate dehydrogenase mutant of Bacillus stearothermophilus. J Gen Microbiol 138:987–996PubMedCrossRefGoogle Scholar
  132. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268PubMedCrossRefGoogle Scholar
  133. Schmidt E, Hellwig M, Knackmuss HJ (1983) Degradation of chlorophenol by a defined microbial community. Appl Environ Microbiol 46:1038–1044PubMedGoogle Scholar
  134. Segura A, Duque E, Rojas A, Godoy P, Delgado A, Hurtado A, Cronan J, Ramos JL (2004) Fatty acid biosynthesis is involved in solvent tolerance in Pseudomonas putida DOT-T1E. Environ Microbiol 6:416–423PubMedCrossRefGoogle Scholar
  135. Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium vaderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133CrossRefGoogle Scholar
  136. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320PubMedCrossRefGoogle Scholar
  137. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147PubMedCrossRefGoogle Scholar
  138. Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  139. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedGoogle Scholar
  140. Silveira MG, Baumgartner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755PubMedCrossRefGoogle Scholar
  141. Sun X, Dennis JJ (2009) A novel insertion sequence derepresses efflux pump expression and preadapts Pseudomonas putida S12 for extreme solvent stress. J Bacteriol 191:6773–6777PubMedCrossRefGoogle Scholar
  142. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefGoogle Scholar
  143. Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD (2009) Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnol Bioeng 102:1377–1386PubMedCrossRefGoogle Scholar
  144. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405PubMedCrossRefGoogle Scholar
  145. Tourdot-Marechal R, Gaboriau D, Beney L, Divies C (2000) Membrane fluidity of stressed cells of Oenococcus oeni. Int J Food Microbiol 55:269–273PubMedCrossRefGoogle Scholar
  146. Touze T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 53:697–706PubMedCrossRefGoogle Scholar
  147. Tran HTM, Cheirsilp B, Hodgson B, Umsakul K (2010) Potential use of Bacillus subtilis in a co-culture with Clostridium acetobutylicum for acetone-butanol-ethanol production from cassava starch. Biochem Eng J 48:260–267CrossRefGoogle Scholar
  148. Trinh CT, Unrean P, Srienc F (2008) A minimal Escherichia coli cell for most efficient ethanol production from hexoses and pentoses. Appl Environ Microbiol 74:3634–3643PubMedCrossRefGoogle Scholar
  149. van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359PubMedCrossRefGoogle Scholar
  150. van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235PubMedGoogle Scholar
  151. Waege I, Schmid G, Thumann S, Thomm M, Hausner W (2010) Shuttle vector-based transformation system for Pyrococcus furiosus. Appl Environ Microbiol 76:3308–3313PubMedCrossRefGoogle Scholar
  152. Wang Z, Chen M, Xu Y, Li S, Lu W, Ping S, Zhang W, Lin M (2008) An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose. Biotechnol Lett 30:657–663PubMedCrossRefGoogle Scholar
  153. Wang X, Wang S, Li W, Li Y, Zhang Y (2009) Tolerant mechanims of bacteria to organic solvents. Sheng Wu Gong Cheng Xue Bao. 25:641–649Google Scholar
  154. Watanabe H, Tanji Y, Unno H, Hori K (2008) Rapid conversion of toluene by an acinetobacter sp. Tol 5 mutant showing monolayer adsorption to water-oil interface. J Biosci Bioeng 106:226–230PubMedCrossRefGoogle Scholar
  155. Watanabe M, Watanabe D, Akao T, Shimoi H (2009) Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J Biosci Bioeng 107:516–518PubMedCrossRefGoogle Scholar
  156. Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49:113–120PubMedCrossRefGoogle Scholar
  157. White DG, Goldman JD, Demple B, Levy SB (1997) Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 179:6122–6126PubMedGoogle Scholar
  158. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276PubMedCrossRefGoogle Scholar
  159. Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol 139:800–810PubMedGoogle Scholar
  160. Wierckx NJ, Ballerstedt H, de Bont JA, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227PubMedCrossRefGoogle Scholar
  161. Wierckx NJ, Ballerstedt H, de Bont JA, de Winde JH, Ruijssenaars HJ, Wery J (2008) Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production. J Bacteriol 190:2822–2830PubMedCrossRefGoogle Scholar
  162. Williams TI, Combs JC, Lynn BC, Strobel HJ (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74:422–432PubMedCrossRefGoogle Scholar
  163. Xu Y, Isom L, Hanna MA (2010) Adding value to carbon dioxide from ethanol fermentations. Bioresour Technol 101:3311–3319PubMedCrossRefGoogle Scholar
  164. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146(Pt 10):2385–2394PubMedGoogle Scholar
  165. Yanase H, Nozaki K, Okamoto K (2005) Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol Lett 27:259–263PubMedCrossRefGoogle Scholar
  166. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138PubMedCrossRefGoogle Scholar
  167. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9:32–44PubMedCrossRefGoogle Scholar
  168. You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503PubMedCrossRefGoogle Scholar
  169. Zahir Z, Seed KD, Dennis JJ (2006) Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10:129–138PubMedCrossRefGoogle Scholar
  170. Zgurskaya HI, Nikaido H (1999a) Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci USA 96:7190–7195PubMedCrossRefGoogle Scholar
  171. Zgurskaya HI, Nikaido H (1999b) AcrA is a highly asymmetric protein capable of spanning the periplasm. J Mol Biol 285:409–420PubMedCrossRefGoogle Scholar
  172. Zgurskaya HI, Yamada Y, Tikhonova EB, Ge Q, Krishnamoorthy G (2009) Structural and functional diversity of bacterial membrane fusion proteins. Biochim Biophys Acta 1794:794–807PubMedCrossRefGoogle Scholar
  173. Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105:20653–20658PubMedCrossRefGoogle Scholar
  174. Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144:23–30PubMedCrossRefGoogle Scholar
  175. Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138PubMedCrossRefGoogle Scholar
  176. Zhou S, Iverson AG, Grayburn WS (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30:335–342PubMedCrossRefGoogle Scholar
  177. Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biotechnology, Institute for Microbial Biotechnology and MetagenomicsUniversity of the Western CapeCape TownSouth Africa
  2. 2.TMO RenewablesSurreyUK
  3. 3.Biocatalysis and Technical Biology Research GroupCape Peninsula University of TechnologyCape TownSouth Africa

Personalised recommendations