Skip to main content

Improving Biomass Sugar Utilization by Engineered Saccharomyces cerevisiae

  • Chapter
  • First Online:
Microbial Stress Tolerance for Biofuels

Part of the book series: Microbiology Monographs ((MICROMONO,volume 22))

Abstract

The efficient utilization of all available sugars in lignocellulosic biomass, which is more abundant than available commodity crops and starch, represents one of the most difficult technological challenges for the production of bioethanol. The well-studied yeast Saccharomyces cerevisiae has played a traditional and major role in industrial bioethanol production due to its high fermentation efficiency. Although S. cerevisiae can effectively convert hexose sugars, such as glucose, mannose, and galactose, into ethanol, it is limited to utilize pentose sugars, including xylose and arabinose, leading to low ethanol yields from lignocellulosic biomass. Numerous approaches for enhancing the conversion of pentose sugars to ethanol have been examined, particularly those involving metabolically engineered S. cerevisiae. In this chapter, recent progress in several promising strategies, including genetic recombination of xylose reductase, xylitol dehydrogenase, and xylose isomerase, genetic engineering and evolutionary engineering, characterization of xylose transporters, and approaches toward understanding of molecular mechanisms for xylose utilization are discussed, with particular focus on xylose-utilizing strains of engineered S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida JR, Hahn-Hägerdal B (2009) Developing Saccharomyces cerevisiae strains for second generation bioethanol: improving xylose fermentation and inhibitor tolerance. Int Sugar J 111:172–180

    CAS  Google Scholar 

  • Amore R, Wilhelm M, Hollenberg CP (1989) The fermentation of xylose - an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30:351–357

    Article  CAS  Google Scholar 

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson O, Jeppsson M, Sonderegger M, Parachin NS, Sauer U, Hahn-Hägerdal B, Gorwa-Grauslund MF (2008) Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25:835–847

    Article  PubMed  CAS  Google Scholar 

  • Brandberg T, Franzén CJ, Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98:122–125

    PubMed  CAS  Google Scholar 

  • Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75:2304–2311

    Article  PubMed  CAS  Google Scholar 

  • Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 18:287–292

    Article  CAS  Google Scholar 

  • Chang SF, Ho NW (1988) Cloning the yeast xylulokinase gene for the improvement of xylose fermentation. Appl Biochem Biotechnol 17:313–318

    Article  PubMed  CAS  Google Scholar 

  • Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  PubMed  CAS  Google Scholar 

  • Deng XX, Ho NWY (1990) Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol 24–25:193–199

    Article  PubMed  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  PubMed  CAS  Google Scholar 

  • Does AL, Bisson LF (1989) Characterization of xylose uptake in the yeasts Pichia heedii and S. stipitis. Appl Environ Microbiol 55:159–164

    PubMed  CAS  Google Scholar 

  • Du J, Li S, Zhao H (2010) Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol Biosyst 6:2150–2156

    Article  PubMed  CAS  Google Scholar 

  • Eliasson A, Boles E, Johansson B, Österberg M, Thevelein JM, Spencer-Martins I, Juhnke H, Hahn-Hägerdal B (2000a) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:376–382

    Article  PubMed  CAS  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000b) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  PubMed  CAS  Google Scholar 

  • Eliasson A, Hofmeyr J-HS, Pedler S, Hahn-Hägerdal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29:288–297

    Article  CAS  Google Scholar 

  • Fiaux J, Cakar ZP, Sonderegger M, Wüthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM, Lagunas R (1973) Contribution of the pentose phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: a critical analysis on the use of labelled glucose. Plant Sci Lett 1:193–200

    Article  CAS  Google Scholar 

  • Gárdonyi M, Hahn-Hägerdal B (2003) The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 32:252–259

    Article  Google Scholar 

  • Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241

    PubMed  CAS  Google Scholar 

  • Hahn-Hägerdal B, Wahlbom CF, Gárdonyi M, van Zyl WH, Cordero Otero RR, Jönsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007a) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007b) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177

    PubMed  Google Scholar 

  • Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788

    PubMed  CAS  Google Scholar 

  • Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675–684

    Article  PubMed  CAS  Google Scholar 

  • Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1:497–506

    Article  PubMed  CAS  Google Scholar 

  • Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    PubMed  CAS  Google Scholar 

  • Ho NWY, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192

    PubMed  CAS  Google Scholar 

  • Hsiao HY, Chiang LC, Ueng PP, Tsao GT (1982) Sequential utilization of mixed monosaccharides by yeasts. Appl Environ Microbiol 43:840–845

    PubMed  CAS  Google Scholar 

  • Hughes SR, Sterner DE, Bischoff KM, Hector RE, Dowd PF, Qureshi N, Bang SS, Grynaviski N, Chakrabarty T, Johnson ET, Dien BS, Mertens JA, Caughey RJ, Liu S, Butt TR, LaBaer J, Cotta MA, Rich JO (2009) Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid 61:22–38

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161

    PubMed  CAS  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  PubMed  CAS  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  PubMed  CAS  Google Scholar 

  • Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167–175

    Article  PubMed  CAS  Google Scholar 

  • Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher K M for NADPH increases ethanol production from xylose recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93:665–673

    Article  PubMed  CAS  Google Scholar 

  • Jin YS, Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105–108:277–285

    Article  PubMed  Google Scholar 

  • Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503

    Article  PubMed  CAS  Google Scholar 

  • Jin YS, Laplaza JM, Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70:6816–6825

    Article  PubMed  CAS  Google Scholar 

  • Jin YS, Alper H, Yang YT, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71:8249–8256

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Hahn-Hägerdal B (2002a) The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2:277–282

    PubMed  CAS  Google Scholar 

  • Johansson B, Hahn-Hägerdal B (2002b) Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 19:225–231

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67:4249–4255

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007a) High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007b) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa K, PÃ¥hlman AK, Hahn-Hägerdal B, Levander F, Gorwa-Grauslund MF (2009) Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast 26:371–382

    Article  PubMed  CAS  Google Scholar 

  • Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43:115–119

    Article  CAS  Google Scholar 

  • Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2002) The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochemistry 41:8785–8795

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2003) Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 373:319–326

    Article  PubMed  CAS  Google Scholar 

  • Kilian SG, van Uden N (1988) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548

    CAS  Google Scholar 

  • Kostrzynska M, Sopher CR, Lee H (1998) Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiol Lett 159:107–112

    Article  PubMed  CAS  Google Scholar 

  • Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  • Krahulec S, Klimacek M, Nidetzky B (2009) Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol J 4:684–694

    Article  PubMed  CAS  Google Scholar 

  • Krishnan MS, Ho NWY, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl Biochem Biotechnol 77–79:373–388

    Article  PubMed  Google Scholar 

  • Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4:69–78

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  PubMed  CAS  Google Scholar 

  • Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549

    Article  PubMed  CAS  Google Scholar 

  • Leandro MJ, Spencer-Martins I, Gonçalves P (2008) The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154:1646–1655

    Article  PubMed  CAS  Google Scholar 

  • Leitgeb S, Petschacher B, Wilson DK, Nidetzky B (2005) Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+. FEBS Lett 579:763–767

    Article  PubMed  CAS  Google Scholar 

  • Ligthelm ME, Prior BA, du Preez JC, Bandt V (1988) An investigation of D-{1-13C} xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 28:293–296

    CAS  Google Scholar 

  • Lin S, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    PubMed  CAS  Google Scholar 

  • Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and 5-hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460

    Article  PubMed  Google Scholar 

  • Liu ZL, Moon J, Andersh AJ, Slininger PJ, Weber S (2008a) Multiple gene mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Saha BC, Slininger PJ (2008b) Lignocellulosic biomass conversion to ethanol by Saccharomyces. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington DC

    Google Scholar 

  • Liu ZL, Ma M, Moon J (2011) Newly engineering designed ethanologenic yeast Saccharomyces cerevisiae tolerates lignocellulose hydrolysates and utilizes heterogeneous biomass sugars for cellulosic ethanol conversion. Abstract. American Society for Microbiology 111th Annual Meeting.

    Google Scholar 

  • Lönn A, Gárdonyi M, van Zyl W, Hahn-Hägerdal B, Otero RC (2002) Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. Eur J Biochem 269:157–163

    Article  PubMed  Google Scholar 

  • Lönn A, Träff-Bjerre KL, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B (2003) Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb Technol 32:567–573

    Article  CAS  Google Scholar 

  • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009a) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009b) Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82:1037–1047

    Article  PubMed  CAS  Google Scholar 

  • Martín C, Jönsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces cerevisiae and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb Technol 32:386–395

    Article  Google Scholar 

  • Martín C, Marcet M, Almazán O, Jönsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98:1767–1773

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Sawayama S (2008) Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng 106:306–309

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Sawayama S (2010) Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability. Appl Biochem Biotechnol 162:1952–1960

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S (2008a) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng 105:296–299

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008b) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increase ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:243–255

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S (2009a) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 100:2392–2398

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2009b) Efficient bioethanol production by recombinant flocculent Saccharomyces cerevisiae with genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75:3818–3822

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009c) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Oguri E, Sawayama S (2010) Evolutionary adaptation of recombinant shochu yeast for improved xylose utilization. J Biosci Bioeng 110:102–105

    Article  PubMed  CAS  Google Scholar 

  • Moes CJ, Pretorius IS, van Zyl WH (1996) Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol Lett 18:269–274

    Article  CAS  Google Scholar 

  • Ni H, Laplaza M, Jeffries TW (2007) Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73:2061–2066

    Article  PubMed  CAS  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1993) Fermentative performance of bacteria and yeast in lignocellulose hydrolysates. Process Biochem 28:249–257

    Article  CAS  Google Scholar 

  • Olsson L, Nielsen J (2000) The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme Microb Technol 26:785–792

    Article  PubMed  CAS  Google Scholar 

  • Otero JM, Panagiotou G, Olsson L (2007) Fueling industrial biotechnology growth with bioethanol. Adv Biochem Eng Biotechnol 108:1–40

    PubMed  CAS  Google Scholar 

  • Petschacher B, Nidetzky B (2005) Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl Environ Microbiol 71:6390–6393

    Article  PubMed  CAS  Google Scholar 

  • Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9

    Article  PubMed  CAS  Google Scholar 

  • Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen JP, Rintala E, Aristidou A, Ruohonen L, Penttilä M (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67:827–837

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (1998) The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 162:155–160

    Article  PubMed  CAS  Google Scholar 

  • Runquist D, Fonseca C, RÃ¥dström P, Spencer-Martins I, Hahn-Hägerdal B (2009a) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123–130

    Article  PubMed  CAS  Google Scholar 

  • Runquist D, Hahn-Hägerdal B, Bettiga M (2009b) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 8:49

    Article  PubMed  CAS  Google Scholar 

  • Runquist D, Hahn-Hägerdal B, RÃ¥dström P (2010) Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5

    Google Scholar 

  • Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34(Database issue): D181–D186

    Google Scholar 

  • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Salusjärvi L, Poutanen M, Pitkänen JP, Koivistoinen H, Aristidou A, Kalkkinen N, Ruohonen L, Penttilä M (2003) Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae. Yeast 20:295–314

    Article  PubMed  CAS  Google Scholar 

  • Salusjärvi L, Pitkänen JP, Aristidou A, Ruohonen L, Penttilä M (2006) Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128:237–261

    Article  PubMed  Google Scholar 

  • Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact 7:18

    Article  PubMed  CAS  Google Scholar 

  • Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000

    PubMed  CAS  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169

    PubMed  CAS  Google Scholar 

  • Sedlak M, Ho NWY (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684

    Article  PubMed  CAS  Google Scholar 

  • Sedlak M, Edenberg HJ, Ho NWY (2003) DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast. Enzyme Microb Technol 33:19–28

    Article  CAS  Google Scholar 

  • Slininger PJ, Bolen PL, Kurtzman CP (1987) Pachysolen tannophilus: properties and process considerations for ethanol production from D-xylose. Enzyme Microb Technol 9:5–15

    Article  CAS  Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998

    Article  PubMed  CAS  Google Scholar 

  • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317

    Article  PubMed  CAS  Google Scholar 

  • Souto-Maior AM, Runquist D, Hahn-Hägerdal B (2009) Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae. J Biotechnol 143:119–123

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88

    Article  CAS  Google Scholar 

  • Taylor M, Tuffin M, Burton S, Eley K, Cwan D (2008) Microbial responses to solvent and alcohol stress. Biotechnol J 3:1388–1397

    Article  PubMed  CAS  Google Scholar 

  • Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249

    Article  PubMed  CAS  Google Scholar 

  • Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2004) Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21:141–150

    Article  PubMed  CAS  Google Scholar 

  • van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90:391–418

    Article  PubMed  CAS  Google Scholar 

  • van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204

    PubMed  Google Scholar 

  • Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306

    Article  PubMed  CAS  Google Scholar 

  • Van Vleet JH, Jeffries TW, Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Matab Eng 10:360–369

    Article  CAS  Google Scholar 

  • van Zyl C, Prior BA, Kilian SG, Brandt EV (1993) Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl Environ Microbiol 59:1487–1494

    PubMed  Google Scholar 

  • Verho R, Richard P, Jonson PH, Sundqvist L, Londesborough J, Penttilä M (2002) Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry 41:13833–13838

    Article  PubMed  CAS  Google Scholar 

  • Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69:5892–5897

    Article  PubMed  CAS  Google Scholar 

  • Wahlbom CF, van Zyl WH, Jönsson LJ, Hahn-Hägerdal B, Cordero Otero RR (2003a) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3:319–326

    Article  PubMed  CAS  Google Scholar 

  • Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ (2003b) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746

    Article  PubMed  CAS  Google Scholar 

  • Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184–4190

    PubMed  CAS  Google Scholar 

  • Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651

    PubMed  CAS  Google Scholar 

  • Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224

    Article  PubMed  CAS  Google Scholar 

  • Wang PY, Schneider H (1980) Growth of yeasts on D-xylulose. Can J Microbiol 26:1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K (2007a) Positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci Biotechnol Biochem 71:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007b) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153:3044–3054

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007c) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130:316–319

    Article  PubMed  CAS  Google Scholar 

  • Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883

    Article  PubMed  CAS  Google Scholar 

  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) A novel evolutionary engineering approach for accelerated utilization of glucose, xylose and arabinose mixtures by engineered Saccharomyces cerevisiae. Appl Environ Microbiol 75:907–914

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K (1969) Inhibition of D-xylose isomerase by pentitols and D-lyxose. Arch Biochem Biophys 131:502–506

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Jeppsson H, Hahn-Hägerdal B (1995) Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Appl Microbiol Biotechnol 44:314–320

    Article  PubMed  CAS  Google Scholar 

  • Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Bôas SB, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442

    Article  PubMed  CAS  Google Scholar 

  • Zhong C, Lau MW, Balan V, Dale BE, Yuan YJ (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Shinichi Yano, Katsuji Murakami, Hiroyuki Inoue, Kenichiro Tsukahara, and Ohgiya Satoru (AIST), Keisuke Makino, Tsutomu Kodaki, Seiya Watanabe (Kyoto University), Takeshi Mizuno, Takafumi Yamashino (Nagoya University), and Mr. Osamu Takimura for helpful discussions. This study was supported in part by the New Energy and Industrial Technology Development Organization, Japan to AM and SS; and NIFA National Research Initiative Grant Award Project 2006-35504-17359 to ZLL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Matsushika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsushika, A., Liu, Z.L., Sawayama, S., Moon, J. (2012). Improving Biomass Sugar Utilization by Engineered Saccharomyces cerevisiae . In: Liu, Z. (eds) Microbial Stress Tolerance for Biofuels. Microbiology Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21467-7_6

Download citation

Publish with us

Policies and ethics