Advertisement

Improving Biomass Sugar Utilization by Engineered Saccharomyces cerevisiae

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 22)

Abstract

The efficient utilization of all available sugars in lignocellulosic biomass, which is more abundant than available commodity crops and starch, represents one of the most difficult technological challenges for the production of bioethanol. The well-studied yeast Saccharomyces cerevisiae has played a traditional and major role in industrial bioethanol production due to its high fermentation efficiency. Although S. cerevisiae can effectively convert hexose sugars, such as glucose, mannose, and galactose, into ethanol, it is limited to utilize pentose sugars, including xylose and arabinose, leading to low ethanol yields from lignocellulosic biomass. Numerous approaches for enhancing the conversion of pentose sugars to ethanol have been examined, particularly those involving metabolically engineered S. cerevisiae. In this chapter, recent progress in several promising strategies, including genetic recombination of xylose reductase, xylitol dehydrogenase, and xylose isomerase, genetic engineering and evolutionary engineering, characterization of xylose transporters, and approaches toward understanding of molecular mechanisms for xylose utilization are discussed, with particular focus on xylose-utilizing strains of engineered S. cerevisiae.

Keywords

Ethanol Production Pentose Phosphate Pathway Xylose Reductase Xylose Fermentation Lignocellulosic Hydrolysate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Drs. Shinichi Yano, Katsuji Murakami, Hiroyuki Inoue, Kenichiro Tsukahara, and Ohgiya Satoru (AIST), Keisuke Makino, Tsutomu Kodaki, Seiya Watanabe (Kyoto University), Takeshi Mizuno, Takafumi Yamashino (Nagoya University), and Mr. Osamu Takimura for helpful discussions. This study was supported in part by the New Energy and Industrial Technology Development Organization, Japan to AM and SS; and NIFA National Research Initiative Grant Award Project 2006-35504-17359 to ZLL.

References

  1. Almeida JR, Hahn-Hägerdal B (2009) Developing Saccharomyces cerevisiae strains for second generation bioethanol: improving xylose fermentation and inhibitor tolerance. Int Sugar J 111:172–180Google Scholar
  2. Amore R, Wilhelm M, Hollenberg CP (1989) The fermentation of xylose - an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30:351–357CrossRefGoogle Scholar
  3. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198PubMedCrossRefGoogle Scholar
  4. Bengtsson O, Jeppsson M, Sonderegger M, Parachin NS, Sauer U, Hahn-Hägerdal B, Gorwa-Grauslund MF (2008) Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25:835–847PubMedCrossRefGoogle Scholar
  5. Brandberg T, Franzén CJ, Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98:122–125PubMedGoogle Scholar
  6. Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75:2304–2311PubMedCrossRefGoogle Scholar
  7. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 18:287–292CrossRefGoogle Scholar
  8. Chang SF, Ho NW (1988) Cloning the yeast xylulokinase gene for the improvement of xylose fermentation. Appl Biochem Biotechnol 17:313–318PubMedCrossRefGoogle Scholar
  9. Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441PubMedCrossRefGoogle Scholar
  10. Deng XX, Ho NWY (1990) Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol 24–25:193–199PubMedCrossRefGoogle Scholar
  11. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266PubMedCrossRefGoogle Scholar
  12. Does AL, Bisson LF (1989) Characterization of xylose uptake in the yeasts Pichia heedii and S. stipitis. Appl Environ Microbiol 55:159–164PubMedGoogle Scholar
  13. Du J, Li S, Zhao H (2010) Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol Biosyst 6:2150–2156PubMedCrossRefGoogle Scholar
  14. Eliasson A, Boles E, Johansson B, Österberg M, Thevelein JM, Spencer-Martins I, Juhnke H, Hahn-Hägerdal B (2000a) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:376–382PubMedCrossRefGoogle Scholar
  15. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000b) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386PubMedCrossRefGoogle Scholar
  16. Eliasson A, Hofmeyr J-HS, Pedler S, Hahn-Hägerdal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29:288–297CrossRefGoogle Scholar
  17. Fiaux J, Cakar ZP, Sonderegger M, Wüthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180PubMedCrossRefGoogle Scholar
  18. Gancedo JM, Lagunas R (1973) Contribution of the pentose phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: a critical analysis on the use of labelled glucose. Plant Sci Lett 1:193–200CrossRefGoogle Scholar
  19. Gárdonyi M, Hahn-Hägerdal B (2003) The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 32:252–259CrossRefGoogle Scholar
  20. Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241PubMedGoogle Scholar
  21. Hahn-Hägerdal B, Wahlbom CF, Gárdonyi M, van Zyl WH, Cordero Otero RR, Jönsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84PubMedGoogle Scholar
  22. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007a) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953PubMedCrossRefGoogle Scholar
  23. Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007b) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177PubMedGoogle Scholar
  24. Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788PubMedGoogle Scholar
  25. Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675–684PubMedCrossRefGoogle Scholar
  26. Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1:497–506PubMedCrossRefGoogle Scholar
  27. Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859PubMedGoogle Scholar
  28. Ho NWY, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192PubMedGoogle Scholar
  29. Hsiao HY, Chiang LC, Ueng PP, Tsao GT (1982) Sequential utilization of mixed monosaccharides by yeasts. Appl Environ Microbiol 43:840–845PubMedGoogle Scholar
  30. Hughes SR, Sterner DE, Bischoff KM, Hector RE, Dowd PF, Qureshi N, Bang SS, Grynaviski N, Chakrabarty T, Johnson ET, Dien BS, Mertens JA, Caughey RJ, Liu S, Butt TR, LaBaer J, Cotta MA, Rich JO (2009) Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid 61:22–38PubMedCrossRefGoogle Scholar
  31. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326PubMedCrossRefGoogle Scholar
  32. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509PubMedCrossRefGoogle Scholar
  33. Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161PubMedGoogle Scholar
  34. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326PubMedCrossRefGoogle Scholar
  35. Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609PubMedCrossRefGoogle Scholar
  36. Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167–175PubMedCrossRefGoogle Scholar
  37. Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher K M for NADPH increases ethanol production from xylose recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93:665–673PubMedCrossRefGoogle Scholar
  38. Jin YS, Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105–108:277–285PubMedCrossRefGoogle Scholar
  39. Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503PubMedCrossRefGoogle Scholar
  40. Jin YS, Laplaza JM, Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70:6816–6825PubMedCrossRefGoogle Scholar
  41. Jin YS, Alper H, Yang YT, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71:8249–8256PubMedCrossRefGoogle Scholar
  42. Johansson B, Hahn-Hägerdal B (2002a) The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2:277–282PubMedGoogle Scholar
  43. Johansson B, Hahn-Hägerdal B (2002b) Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 19:225–231PubMedCrossRefGoogle Scholar
  44. Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67:4249–4255PubMedCrossRefGoogle Scholar
  45. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368PubMedCrossRefGoogle Scholar
  46. Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007a) High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73:1039–1046PubMedCrossRefGoogle Scholar
  47. Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007b) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5PubMedCrossRefGoogle Scholar
  48. Karhumaa K, Påhlman AK, Hahn-Hägerdal B, Levander F, Gorwa-Grauslund MF (2009) Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast 26:371–382PubMedCrossRefGoogle Scholar
  49. Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43:115–119CrossRefGoogle Scholar
  50. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2002) The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochemistry 41:8785–8795PubMedCrossRefGoogle Scholar
  51. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2003) Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 373:319–326PubMedCrossRefGoogle Scholar
  52. Kilian SG, van Uden N (1988) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548Google Scholar
  53. Kostrzynska M, Sopher CR, Lee H (1998) Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiol Lett 159:107–112PubMedCrossRefGoogle Scholar
  54. Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783CrossRefGoogle Scholar
  55. Krahulec S, Klimacek M, Nidetzky B (2009) Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol J 4:684–694PubMedCrossRefGoogle Scholar
  56. Krishnan MS, Ho NWY, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl Biochem Biotechnol 77–79:373–388PubMedCrossRefGoogle Scholar
  57. Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292PubMedCrossRefGoogle Scholar
  58. Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4:69–78PubMedCrossRefGoogle Scholar
  59. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664PubMedCrossRefGoogle Scholar
  60. Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409PubMedCrossRefGoogle Scholar
  61. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934PubMedCrossRefGoogle Scholar
  62. Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549PubMedCrossRefGoogle Scholar
  63. Leandro MJ, Spencer-Martins I, Gonçalves P (2008) The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154:1646–1655PubMedCrossRefGoogle Scholar
  64. Leitgeb S, Petschacher B, Wilson DK, Nidetzky B (2005) Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+. FEBS Lett 579:763–767PubMedCrossRefGoogle Scholar
  65. Ligthelm ME, Prior BA, du Preez JC, Bandt V (1988) An investigation of D-{1-13C} xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 28:293–296Google Scholar
  66. Lin S, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642PubMedCrossRefGoogle Scholar
  67. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352PubMedGoogle Scholar
  68. Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and 5-hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460PubMedCrossRefGoogle Scholar
  69. Liu ZL, Moon J, Andersh AJ, Slininger PJ, Weber S (2008a) Multiple gene mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753PubMedCrossRefGoogle Scholar
  70. Liu ZL, Saha BC, Slininger PJ (2008b) Lignocellulosic biomass conversion to ethanol by Saccharomyces. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington DCGoogle Scholar
  71. Liu ZL, Ma M, Moon J (2011) Newly engineering designed ethanologenic yeast Saccharomyces cerevisiae tolerates lignocellulose hydrolysates and utilizes heterogeneous biomass sugars for cellulosic ethanol conversion. Abstract. American Society for Microbiology 111th Annual Meeting.Google Scholar
  72. Lönn A, Gárdonyi M, van Zyl W, Hahn-Hägerdal B, Otero RC (2002) Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. Eur J Biochem 269:157–163PubMedCrossRefGoogle Scholar
  73. Lönn A, Träff-Bjerre KL, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B (2003) Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb Technol 32:567–573CrossRefGoogle Scholar
  74. Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009a) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82:1067–1078PubMedCrossRefGoogle Scholar
  75. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009b) Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82:1037–1047PubMedCrossRefGoogle Scholar
  76. Martín C, Jönsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces cerevisiae and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb Technol 32:386–395CrossRefGoogle Scholar
  77. Martín C, Marcet M, Almazán O, Jönsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98:1767–1773PubMedCrossRefGoogle Scholar
  78. Matsushika A, Sawayama S (2008) Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng 106:306–309PubMedCrossRefGoogle Scholar
  79. Matsushika A, Sawayama S (2010) Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability. Appl Biochem Biotechnol 162:1952–1960PubMedCrossRefGoogle Scholar
  80. Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S (2008a) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng 105:296–299PubMedCrossRefGoogle Scholar
  81. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008b) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increase ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:243–255PubMedCrossRefGoogle Scholar
  82. Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S (2009a) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 100:2392–2398PubMedCrossRefGoogle Scholar
  83. Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2009b) Efficient bioethanol production by recombinant flocculent Saccharomyces cerevisiae with genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75:3818–3822PubMedCrossRefGoogle Scholar
  84. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009c) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53PubMedCrossRefGoogle Scholar
  85. Matsushika A, Oguri E, Sawayama S (2010) Evolutionary adaptation of recombinant shochu yeast for improved xylose utilization. J Biosci Bioeng 110:102–105PubMedCrossRefGoogle Scholar
  86. Moes CJ, Pretorius IS, van Zyl WH (1996) Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol Lett 18:269–274CrossRefGoogle Scholar
  87. Ni H, Laplaza M, Jeffries TW (2007) Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73:2061–2066PubMedCrossRefGoogle Scholar
  88. Olsson L, Hahn-Hägerdal B (1993) Fermentative performance of bacteria and yeast in lignocellulose hydrolysates. Process Biochem 28:249–257CrossRefGoogle Scholar
  89. Olsson L, Nielsen J (2000) The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme Microb Technol 26:785–792PubMedCrossRefGoogle Scholar
  90. Otero JM, Panagiotou G, Olsson L (2007) Fueling industrial biotechnology growth with bioethanol. Adv Biochem Eng Biotechnol 108:1–40PubMedGoogle Scholar
  91. Petschacher B, Nidetzky B (2005) Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl Environ Microbiol 71:6390–6393PubMedCrossRefGoogle Scholar
  92. Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9PubMedCrossRefGoogle Scholar
  93. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83PubMedCrossRefGoogle Scholar
  94. Pitkänen JP, Rintala E, Aristidou A, Ruohonen L, Penttilä M (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67:827–837PubMedCrossRefGoogle Scholar
  95. Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (1998) The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 162:155–160PubMedCrossRefGoogle Scholar
  96. Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn-Hägerdal B (2009a) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123–130PubMedCrossRefGoogle Scholar
  97. Runquist D, Hahn-Hägerdal B, Bettiga M (2009b) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 8:49PubMedCrossRefGoogle Scholar
  98. Runquist D, Hahn-Hägerdal B, Rådström P (2010) Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5Google Scholar
  99. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34(Database issue): D181–D186Google Scholar
  100. Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052PubMedCrossRefGoogle Scholar
  101. Salusjärvi L, Poutanen M, Pitkänen JP, Koivistoinen H, Aristidou A, Kalkkinen N, Ruohonen L, Penttilä M (2003) Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae. Yeast 20:295–314PubMedCrossRefGoogle Scholar
  102. Salusjärvi L, Pitkänen JP, Aristidou A, Ruohonen L, Penttilä M (2006) Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128:237–261PubMedCrossRefGoogle Scholar
  103. Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact 7:18PubMedCrossRefGoogle Scholar
  104. Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000PubMedGoogle Scholar
  105. Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169PubMedGoogle Scholar
  106. Sedlak M, Ho NWY (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684PubMedCrossRefGoogle Scholar
  107. Sedlak M, Edenberg HJ, Ho NWY (2003) DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast. Enzyme Microb Technol 33:19–28CrossRefGoogle Scholar
  108. Slininger PJ, Bolen PL, Kurtzman CP (1987) Pachysolen tannophilus: properties and process considerations for ethanol production from D-xylose. Enzyme Microb Technol 9:5–15CrossRefGoogle Scholar
  109. Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998PubMedCrossRefGoogle Scholar
  110. Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317PubMedCrossRefGoogle Scholar
  111. Souto-Maior AM, Runquist D, Hahn-Hägerdal B (2009) Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae. J Biotechnol 143:119–123PubMedCrossRefGoogle Scholar
  112. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefGoogle Scholar
  113. Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88CrossRefGoogle Scholar
  114. Taylor M, Tuffin M, Burton S, Eley K, Cwan D (2008) Microbial responses to solvent and alcohol stress. Biotechnol J 3:1388–1397PubMedCrossRefGoogle Scholar
  115. Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249PubMedCrossRefGoogle Scholar
  116. Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668–5674PubMedCrossRefGoogle Scholar
  117. Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2004) Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21:141–150PubMedCrossRefGoogle Scholar
  118. van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90:391–418PubMedCrossRefGoogle Scholar
  119. van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204PubMedGoogle Scholar
  120. Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306PubMedCrossRefGoogle Scholar
  121. Van Vleet JH, Jeffries TW, Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Matab Eng 10:360–369CrossRefGoogle Scholar
  122. van Zyl C, Prior BA, Kilian SG, Brandt EV (1993) Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl Environ Microbiol 59:1487–1494PubMedGoogle Scholar
  123. Verho R, Richard P, Jonson PH, Sundqvist L, Londesborough J, Penttilä M (2002) Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry 41:13833–13838PubMedCrossRefGoogle Scholar
  124. Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69:5892–5897PubMedCrossRefGoogle Scholar
  125. Wahlbom CF, van Zyl WH, Jönsson LJ, Hahn-Hägerdal B, Cordero Otero RR (2003a) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3:319–326PubMedCrossRefGoogle Scholar
  126. Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ (2003b) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746PubMedCrossRefGoogle Scholar
  127. Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184–4190PubMedGoogle Scholar
  128. Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651PubMedGoogle Scholar
  129. Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224PubMedCrossRefGoogle Scholar
  130. Wang PY, Schneider H (1980) Growth of yeasts on D-xylulose. Can J Microbiol 26:1165–1168PubMedCrossRefGoogle Scholar
  131. Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349PubMedCrossRefGoogle Scholar
  132. Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K (2007a) Positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci Biotechnol Biochem 71:1365–1369PubMedCrossRefGoogle Scholar
  133. Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007b) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153:3044–3054PubMedCrossRefGoogle Scholar
  134. Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007c) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130:316–319PubMedCrossRefGoogle Scholar
  135. Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883PubMedCrossRefGoogle Scholar
  136. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) A novel evolutionary engineering approach for accelerated utilization of glucose, xylose and arabinose mixtures by engineered Saccharomyces cerevisiae. Appl Environ Microbiol 75:907–914PubMedCrossRefGoogle Scholar
  137. Yamanaka K (1969) Inhibition of D-xylose isomerase by pentitols and D-lyxose. Arch Biochem Biophys 131:502–506PubMedCrossRefGoogle Scholar
  138. Yu S, Jeppsson H, Hahn-Hägerdal B (1995) Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Appl Microbiol Biotechnol 44:314–320PubMedCrossRefGoogle Scholar
  139. Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Bôas SB, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442PubMedCrossRefGoogle Scholar
  140. Zhong C, Lau MW, Balan V, Dale BE, Yuan YJ (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Biomass Technology Research Center, National Institute of Advanced Industrial Science and TechnologyHigashi-hiroshimaJapan
  2. 2.National Center for Agricultural Utilization Research, USDA Agricultural Research ServicePeoriaUSA

Personalised recommendations