Advertisement

Molecular Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 22)

Abstract

The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations, especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol stress response in past decades, molecular mechanisms of ethanol tolerance are not well known. With developments of genome sequencing and genomic technologies, our understanding of yeast biology has been revolutionarily advanced. Additional evidence of ethanol tolerance has been discovered involving numerous genes with variety of functions, multiple loci, and complex interactions, as well as signal transduction pathways and regulatory networks. Genetic manipulation of one or a few genes is unable to achieve desirable phenotype for multiple stress tolerance. Transcription dynamics and profiling studies of key gene sets such as heat shock proteins provided new insight into tolerance mechanisms. A transient gene expression response or a stress response to ethanol does not necessarily lead to ethanol-tolerant phenotype in yeast. Reprogrammed pathways and interactions of cofactor regeneration and redox balance revealed by time-course studies suggest constitutive gene expression response is important for ethanol tolerance. Fine-tuned expression of key transcription factor genes, which regulate numerous genes associated with ethanol stress, may achieve desirable phenotype and avoid side effect to cell growth at the same time.

Keywords

Pentose Phosphate Pathway Ethanol Tolerance Glycogen Metabolism Intracellular Acidification Heat Shock Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to Michael A. Cotta and Marsha Ebener for reading the manuscript. This work was supported in part by NIFA National Research Initiative Award 2006-35504-17359. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

References

  1. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498(1):98–103PubMedCrossRefGoogle Scholar
  2. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568PubMedCrossRefGoogle Scholar
  3. Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S (2009) Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50(3):301–310PubMedCrossRefGoogle Scholar
  4. Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M (2004) Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J Biotechnol 110(3):287–293PubMedCrossRefGoogle Scholar
  5. Birch RM, Walker GM (2000) Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb Technol 26(9–10):678–687PubMedCrossRefGoogle Scholar
  6. Blázquez MA, Lagunas R, Gancedo C, Gancedo JM (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinase. FEBS Lett 329(1–2):51–54PubMedCrossRefGoogle Scholar
  7. Bonner JJ, Ballou C, Fackenthal DL (1994) Interactions between DNA-bound trimers of the yeast heat shock factor. Mol Cell Biol 14(1):501–508PubMedGoogle Scholar
  8. Bruinenberg PM, van Dijken JP, Scheffers WA (1983) A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol 129(4):953–964Google Scholar
  9. Cakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5(6–7):569–578PubMedCrossRefGoogle Scholar
  10. Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo M, Aranda A (2007) A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 114(1):83–91PubMedCrossRefGoogle Scholar
  11. Cartwright CP, Veazey FJ, Rose AH (1987) Effect of ethanol on activity of the plasma-membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae. J Gen Microbiol 133(4):857–865PubMedGoogle Scholar
  12. Casey GP, Ingledew WM (1986) Ethanol tolerance in yeasts. Crit Rev Microbiol 13(3):219–280PubMedCrossRefGoogle Scholar
  13. Chandler M, Stanley GA, Rogers P, Chambers P (2004) A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol 54(4):427–454Google Scholar
  14. Chi Z, Arneborg N (1999) Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol 86(6):1047–1052PubMedCrossRefGoogle Scholar
  15. Choi JY, Stukey J, Hwang SY, Martin CE (1996) Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 271(7):3581–3589PubMedCrossRefGoogle Scholar
  16. Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17(12):3326–3341PubMedCrossRefGoogle Scholar
  17. Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P (1997) Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143(5):1649–1656PubMedCrossRefGoogle Scholar
  18. Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22(4–5):217–246PubMedCrossRefGoogle Scholar
  19. Cronin SR, Rao R, Hampton RY (2002) Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J Cell Biol 157(6):1017–1028PubMedCrossRefGoogle Scholar
  20. D’Amore T, Stewart GG (1987) Ethanol tolerance of yeast. Enzyme Microb Technol 9(6):322–330CrossRefGoogle Scholar
  21. D’Amore T, Panchal CJ, Russell I, Stewart GG (1990) A study of ethanol tolerance in yeast. Crit Rev Biotechnol 9(4):287–304PubMedCrossRefGoogle Scholar
  22. Del Castillo Agudo L (1992) Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance. Appl Microbiol Biotechnol 37(5):647–651CrossRefGoogle Scholar
  23. Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85(2):253–263PubMedCrossRefGoogle Scholar
  24. Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H (2008) Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE 3(7):e2623PubMedCrossRefGoogle Scholar
  25. Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H (2009) Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst Eng 32(5):681–688PubMedCrossRefGoogle Scholar
  26. Dombek KM, Ingram LO (1986) Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl Environ Microbiol 52(5):975–981PubMedGoogle Scholar
  27. Du X, Takagi H (2007) N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75(6):1343–1351PubMedCrossRefGoogle Scholar
  28. Durchschlag E, Reiter W, Ammerer G, Schüller C (2004) Nuclear localization destabilizes the stress-regulated transcription factor Msn2. J Biol Chem 279(53):55425–55432PubMedCrossRefGoogle Scholar
  29. Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24(4):469–486PubMedCrossRefGoogle Scholar
  30. Ferguson SB, Anderson ES, Harshaw RB, Thate T, Craig NL, Nelson HC (2005) Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 169(3):1203–1214PubMedCrossRefGoogle Scholar
  31. Fernandes L, Rodrigues-Pousada C, Struhl K (1997) Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17(12):6982–6993PubMedGoogle Scholar
  32. Forgac M (1998) Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett 440(3):258–263PubMedCrossRefGoogle Scholar
  33. François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1):125–145PubMedCrossRefGoogle Scholar
  34. Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6(5):744–750PubMedCrossRefGoogle Scholar
  35. Garreau H, Hasan RN, Renault G, Estruch F, Boy-Marcotte E, Jacquet M (2000) Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146(9):2113–2120PubMedGoogle Scholar
  36. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–4257PubMedCrossRefGoogle Scholar
  37. Geymonat M, Wang L, Garreau H, Jacquet M (1998) Ssa1p chaperone interacts with the guanine nucleotide exchange factor of Ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Mol Microbiol 30(4):855–864PubMedCrossRefGoogle Scholar
  38. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94(1):73–82PubMedCrossRefGoogle Scholar
  39. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275PubMedCrossRefGoogle Scholar
  40. Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12(4):586–597PubMedCrossRefGoogle Scholar
  41. Görner W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H, Schüller C (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 21(1–2):135–144PubMedCrossRefGoogle Scholar
  42. Gulshan K, Moye-Rowley WS (2007) Multidrug resistance in fungi. Eukaryot Cell 6(11):1933–1942PubMedCrossRefGoogle Scholar
  43. Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24(12):5249–5256PubMedCrossRefGoogle Scholar
  44. Hamel P, Saint-Georges Y, de Pinto B, Lachacinski N, Altamura N, Dujardin G (2004) Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Mol Microbiol 51(2):307–317PubMedCrossRefGoogle Scholar
  45. Hara S, Sasaki M, Obata T, Noshiro K (1976a) Isolation of ethanol tolerant mutants from sake yeast Kyotai no. 7. J Brew Soc Jpn 71:301–304CrossRefGoogle Scholar
  46. Hara S, Yamamoto N, Fukuda Y, Obata T, Noshiro K (1976b) Comparison of physiological characteristics between sake yeast Kyokai no. 7 and its ethanol tolerant mutant. J Brew Soc Jpn 71:564–568CrossRefGoogle Scholar
  47. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004):99–104PubMedCrossRefGoogle Scholar
  48. Hartley AD, Ward MP, Garrett S (1994) The Yak1 protein kinase of Saccharomyces cerevisiae moderates thermotolerance and inhibits growth by an Sch9 protein kinase-independent mechanism. Genetics 136(2):465–474PubMedGoogle Scholar
  49. Hashikawa N, Mizukami Y, Imazu H, Sakurai H (2006) Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. J Biol Chem 281(7):3936–3942PubMedCrossRefGoogle Scholar
  50. Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131(1):34–44PubMedCrossRefGoogle Scholar
  51. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372PubMedCrossRefGoogle Scholar
  52. Hou J, Lages NF, Oldiges M, Vemuri GN (2009) Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng 11(4–5):253–261PubMedCrossRefGoogle Scholar
  53. Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW (2007) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175(3):1479–1487PubMedCrossRefGoogle Scholar
  54. Inoue T, Wang Y, Jefferies K, Qi J, Hinton A, Forgac M (2005) Structure and regulation of the V-ATPases. J Bioenerg Biomembr 37(6):393–398PubMedCrossRefGoogle Scholar
  55. Jacquet M, Renault G, Lallet S, De Mey J, Goldbeter A (2003) Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J Cell Biol 161(3):497–505PubMedCrossRefGoogle Scholar
  56. Jungwirth H, Kuchler K (2006) Yeast ABC transporters– a tale of sex, stress, drugs and aging. FEBS Lett 580(4):1131–1138PubMedCrossRefGoogle Scholar
  57. Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 79(2):273–283PubMedCrossRefGoogle Scholar
  58. Kitagaki H, Shimoi H (2007) Mitochondrial dynamics of yeast during sake brewing. J Biosci Bioeng 104(3):227–230PubMedCrossRefGoogle Scholar
  59. Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13(1):248–256PubMedGoogle Scholar
  60. Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H, Hirata D (2004) Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 68(4):968–972PubMedCrossRefGoogle Scholar
  61. Lee S, Carlson T, Christian N, Lea K, Kedzie J, Reilly JP, Bonner JJ (2000) The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol Biol Cell 11(5):1753–1764PubMedCrossRefGoogle Scholar
  62. Lee P, Cho BR, Joo HS, Hahn JS (2008) Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4. Mol Microbiol 70(4):882–895PubMedGoogle Scholar
  63. Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: diversity reflects human history. Mol Ecol 16(10):2091–2102PubMedCrossRefGoogle Scholar
  64. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642PubMedCrossRefGoogle Scholar
  65. Liu Z, Saha BC, Slininger PJ (2008) Lignocellulosic biomass conversion to ethanol by Saccharomyces. In: Wall J, Harwood C, Demain A (eds) Bioenergy. ASM Press, Washington DC, pp 17–36Google Scholar
  66. Lockshon D, Surface LE, Kerr EO, Kaeberlein M, Kennedy BK (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175(1):77–91PubMedCrossRefGoogle Scholar
  67. López-Ribot JL, Chaffin WL (1996) Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 178(15):4724–4726PubMedGoogle Scholar
  68. Ma M, Liu ZL (2010a) Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol 10:169PubMedCrossRefGoogle Scholar
  69. Ma M, Liu ZL (2010b) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87(3):829–845PubMedCrossRefGoogle Scholar
  70. Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction. Plant J 31(6):699–712PubMedCrossRefGoogle Scholar
  71. Mansure JJ, Panek AD, Crowe LM, Crowe JH (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim Biophys Acta 1191(2):309–316PubMedCrossRefGoogle Scholar
  72. Marchler G, Schüller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12(5):1997–2003PubMedGoogle Scholar
  73. Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8(1):35–52PubMedCrossRefGoogle Scholar
  74. Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17(8):4282–4293PubMedGoogle Scholar
  75. Martin CE, Oh CS, Jiang Y (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta 1771(3):271–285PubMedCrossRefGoogle Scholar
  76. Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15(9):2227–2235PubMedGoogle Scholar
  77. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135PubMedCrossRefGoogle Scholar
  78. Millar DG, Griffiths-Smith K, Algar E, Scopes RK (1982) Activity and stability of glycolytic enzymes in the presence of ethanol. Biotechnol Lett 9(4):601–606CrossRefGoogle Scholar
  79. Moskvina E, Schüller C, Maurer CT, Mager WH, Ruis H (1998) A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14(11):1041–1050PubMedCrossRefGoogle Scholar
  80. Moukadiri I, Zueco J (2001) Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges. FEMS Yeast Res 1(3):241–245PubMedGoogle Scholar
  81. Müller D, Exler S, Aguilera-Vázquez L, Guerrero-Martín E, Reuss M (2003) Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Yeast 20(4):351–367PubMedCrossRefGoogle Scholar
  82. Nabais RC, Sá-Correia I, Viegas CA, Novais JM (1988) Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeasts. Appl Environ Microbiol 54(10):2439–2446PubMedGoogle Scholar
  83. Nguyên DT, Alarco AM, Raymond M (2001) Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J Biol Chem 276(2):1138–1145PubMedCrossRefGoogle Scholar
  84. Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJ (2009) Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9:44PubMedCrossRefGoogle Scholar
  85. Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shiomoi H, Ito K (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90(3):313–320PubMedGoogle Scholar
  86. Outlaw J, Collins KJ, Duffield JA (2005) Agriculture as a producer and consumer of energy. CABI Publishing, Oxfordshire/CambridgeGoogle Scholar
  87. Park H, Bakalinsky AT (2000) SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16(10):881–888PubMedCrossRefGoogle Scholar
  88. Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372(6505):475–478PubMedCrossRefGoogle Scholar
  89. Pascual C, Alonso A, García I, Romay C (1988) Effect of ethanol on glucose transport, key glycolytic enzymes and proton extrusion in Saccharomyces cerevisiae. Biotechnol Bioeng 32(3):374–378PubMedCrossRefGoogle Scholar
  90. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59(10):1640–1648PubMedCrossRefGoogle Scholar
  91. Pina C, António J, Hogg T (2004) Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnol Lett 26(19):1521–1527PubMedCrossRefGoogle Scholar
  92. Piper PW, Talreja K, Panaretou B, Moradas-Ferreira P, Byrne K, Praekelt UM, Meacock P, Récnacq M, Boucherie H (1994) Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140(11):3031–3038PubMedCrossRefGoogle Scholar
  93. Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134(2–3):121–127PubMedCrossRefGoogle Scholar
  94. Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 2(1):12–24PubMedCrossRefGoogle Scholar
  95. Portnoy ME, Schmidt PJ, Rogers RS, Culotta VC (2001) Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol Genet Genomics 265(5):873–882PubMedCrossRefGoogle Scholar
  96. Prodromou C, Pearl LH (2003) Structure and functional relationships of Hsp90. Curr Cancer Drug Targets 3(5):301–323PubMedCrossRefGoogle Scholar
  97. Puig S, Pérez-Ortín JE (2000) Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast 16(2):139–148PubMedCrossRefGoogle Scholar
  98. Ramírez J, Ramírez O, Saldaña C, Coria R, Peña A (1998) A Saccharomyces cerevisiae mutant lacking a K+/H+ exchanger. J Bacteriol 180(22):5860–5865PubMedGoogle Scholar
  99. Reinders A, Bürckert N, Boller T, Wiemken A, De Virgilio C (1998) Saccharomyces cerevisiae cAMP dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev 12(18):2943–2955PubMedCrossRefGoogle Scholar
  100. Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275(12):8290–8300PubMedCrossRefGoogle Scholar
  101. Rodrigues-Pousada CA, Nevitt T, Menezes R, Azevedo D, Pereira J, Amaral C (2004) Yeast activator proteins and stress response: an overview. FEBS Lett 567(1):80–85PubMedCrossRefGoogle Scholar
  102. Rodrigues-Pousada C, Menezes RA, Pimentel C (2010) The Yap family and its role in stress response. Yeast 27(5):245–258PubMedCrossRefGoogle Scholar
  103. Rosa MF, Sá-Correia I (1996) Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. FEMS Microbiol Lett 135(2–3):271–274PubMedCrossRefGoogle Scholar
  104. Rudolph AS, Crowe JH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22(4):367–377PubMedCrossRefGoogle Scholar
  105. Sajbidor J, Ciesarová Z, Smogrovicová D (1995) Influence of ethanol on the lipid content and fatty acid composition of Saccharomyces cerevisiae. Folia Microbiol 40(5):508–510CrossRefGoogle Scholar
  106. Sales K, Brandt W, Rumbak E, Lindsey G (2000) The LEA-like protein HSP12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta 1463(2):267–278PubMedCrossRefGoogle Scholar
  107. Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9(2):344–352PubMedCrossRefGoogle Scholar
  108. Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295PubMedCrossRefGoogle Scholar
  109. Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122(4):383–393PubMedCrossRefGoogle Scholar
  110. Scheffler IE (1999) Mitochondria. Wiley-Liss, New YorkCrossRefGoogle Scholar
  111. Schüller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13(18):4382–4389PubMedGoogle Scholar
  112. Sebollela A, Louzada PR, Sola-Penna M, Sarone-Williams V, Coelho-Sampaio T, Ferreira ST (2004) Inhibition of yeast glutathione reductase by trehalose: possible implications in yeast survival and recovery from stress. Int J Biochem Cell Biol 36(5):900–908PubMedCrossRefGoogle Scholar
  113. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147PubMedCrossRefGoogle Scholar
  114. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1(5):639–648PubMedCrossRefGoogle Scholar
  115. Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264(28):16537–16544PubMedGoogle Scholar
  116. Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the △9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265(33):20144–20149PubMedGoogle Scholar
  117. Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71(12):8656–8662PubMedCrossRefGoogle Scholar
  118. Takagi H, Matsui F, Kawaguchi A, Wu H, Shimoi H, Kubo Y (2007) Construction and analysis of self-cloning sake yeasts that accumulate proline. J Biosci Bioeng 103(4):377–380PubMedCrossRefGoogle Scholar
  119. Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations and biotechnological applications. Appl Microbiol Biotechnol 81(2):211–223PubMedCrossRefGoogle Scholar
  120. Takemori Y, Sakaguchi A, Matsuda S, Mizukami Y, Sakurai H (2006) Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 275(1):89–96PubMedCrossRefGoogle Scholar
  121. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sá-Correia I (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34:D446–D451PubMedCrossRefGoogle Scholar
  122. Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761–5772PubMedCrossRefGoogle Scholar
  123. Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signaling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5(6):1301–1307PubMedCrossRefGoogle Scholar
  124. Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33(5):904–918PubMedCrossRefGoogle Scholar
  125. Thevelein JM, Cauwenberg L, Colombo S, De Winde JH, Donation M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, Van Dijck P, Versele M, Wera S, Winderickx J (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26(9–10):819–825PubMedCrossRefGoogle Scholar
  126. Van Voorst F, Houghton-Larsen J, Jønson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23(5):351–359PubMedCrossRefGoogle Scholar
  127. Vertes A, Qureshi N, Yukawa H, Blaschek H (2009) Biomass to biofuels. John Wiley & Sons, Ltd, West SussexGoogle Scholar
  128. Walker GM, Maynard AI (1997) Accumulation of magnesium ions during fermentative metabolism in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 18(1):1–3PubMedCrossRefGoogle Scholar
  129. Wang L, Renault G, Garreau H, Jacquet M (2004) Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae. Microbiology 150(10):3383–3391PubMedCrossRefGoogle Scholar
  130. Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H (2007) Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. J Biosci Bioeng 104(3):163–170PubMedCrossRefGoogle Scholar
  131. Watanabe M, Watanabe D, Akao T, Shimoi H (2009) Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J Biosci Bioeng 107(5):516–518PubMedCrossRefGoogle Scholar
  132. Wei P, Li Z, Lin Y, He P, Jiang N (2007) Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Biotechnol Lett 29(10):1501–1508PubMedCrossRefGoogle Scholar
  133. Wilson WA, St Amour CV, Collins JL, Ringe D, Petsko GA (2004) The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: a member of the DJ-1/ThiJ/PfpI superfamily. Proc Natl Acad Sci USA 101(6):1531–1536PubMedCrossRefGoogle Scholar
  134. Xiao D, Wu S, Zhu X, Chen Y, Guo X (2010) Effects of soya fatty acids on cassava ethanol fermentation. Appl Biochem Biotechnol 160(2):410–420PubMedCrossRefGoogle Scholar
  135. Yamaji K, Hara S, Mizoguchi H (2003) Influence of Ras function on ethanol stress response of sake yeast. J Biosci Bioeng 96(5):474–480PubMedGoogle Scholar
  136. Yamamoto A, Mizukami Y, Sakurai H (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280(12):11911–11919PubMedCrossRefGoogle Scholar
  137. Yan C, Lee LH, Davis LI (1998) Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17(24):7416–7429PubMedCrossRefGoogle Scholar
  138. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9(1):32–44PubMedCrossRefGoogle Scholar
  139. You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69(3):1499–1503PubMedCrossRefGoogle Scholar
  140. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5(10):781–791PubMedCrossRefGoogle Scholar
  141. Yuan DS, Dancis A, Klausner RD (1997) Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem 272(41):25787–25793PubMedCrossRefGoogle Scholar
  142. Zhao XQ, Xue C, Ge XM, Yuan WJ, Wang JY, Bai FW (2009) Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J Biotechnol 139(1):55–60PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Bioenergy Research, National Center for Agricultural Utilization Research, USDA-ARSPeoriaUSA

Personalised recommendations