Advertisement

Molecular Mechanisms of Programmed Cell Death Induced by Acetic Acid in Saccharomyces cerevisiae

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 22)

Abstract

Microorganisms face constant stressful conditions, such as weak acid stress, both in natural habitats and during their use for biotechnological applications. Microbes respond to stress by activating either cell adaptation or death pathways. Yeast Saccharomyces cerevisiae has been a valuable model to study the mechanisms of cell response to stressful environmental changes. This chapter summarizes current knowledge on molecular mechanisms of general weak acid stress response and programmed cell death in response to acetic acid as unraveled in S. cerevisiae. Future perspectives aimed at clarifying the complex intracellular signaling networks, integrating cell adaptation and death pathways in response to acetic acid stress are envisaged. Elucidation of finely regulated integration mechanisms of such pathways represents a challenge for understanding aspects of eukaryotic cell homeostasis as well as for improving the performance of a given yeast strain in industrial processes and applications.

Keywords

Yeast Cell Programme Cell Death Acid Stress Sorbic Acid Acetic Acid Lead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Professor Salvatore Passarella for critical reading of the manuscript. This work was financially supported by a grant from Fondazione Cassa di Risparmio di Puglia and Program FIRB-MERIT [1-RBNE08HWLZ_012] and [1-RBNE08YFN3_005].

References

  1. Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leao C, Rodrigues F, Ludovico P (2009) Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 9:720–732PubMedCrossRefGoogle Scholar
  2. Arneborg N, Jespersen L, Jakobsen M (2000) Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Arch Microbiol 174:125–128PubMedCrossRefGoogle Scholar
  3. Atlante A, de Bari L, Bobba A, Marra E, Calissano P, Passarella S (2003) Cytochrome c, released from cerebellar granule cells undergoing apoptosis or excytotoxic death, can generate protonmotive force and drive ATP synthesis in isolated mitochondria. J Neurochem 86:591–604PubMedCrossRefGoogle Scholar
  4. Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357PubMedCrossRefGoogle Scholar
  5. Burhans WC, Weinberger M (2009) Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes? Cell Cycle 8:2300–2302PubMedCrossRefGoogle Scholar
  6. Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–1270PubMedCrossRefGoogle Scholar
  7. Carmelo V, Bogaerts P, Sa-Correia I (1996) Activity of plasma membrane H+−ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH. Arch Microbiol 166:315–320PubMedCrossRefGoogle Scholar
  8. Carmelo V, Santos H, Sa-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325:63–70PubMedCrossRefGoogle Scholar
  9. Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F (2010a) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ. doi: 10.1038/cdd.2009.219
  10. Carmona-Gutierrez D, Frohlich KU, Kroemer G, Madeo F (2010b) Metacaspases are caspases. Doubt no more. Cell Death Differ 17:377–378PubMedCrossRefGoogle Scholar
  11. Casal M, Cardoso H, Leao C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142(Pt 6):1385–1390PubMedCrossRefGoogle Scholar
  12. Cheng WC, Leach KM, Hardwick JM (2008) Mitochondrial death pathways in yeast and mammalian cells. Biochim Biophys Acta 1783:1272–1279PubMedCrossRefGoogle Scholar
  13. Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17:3326–3341PubMedCrossRefGoogle Scholar
  14. Du L, Su Y, Sun D, Zhu W, Wang J, Zhuang X, Zhou S, Lu Y (2008) Formic acid induces Yca1p-independent apoptosis-like cell death in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8:531–539PubMedCrossRefGoogle Scholar
  15. Eisenberg T, Buttner S, Kroemer G, Madeo F (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis 12:1011–1023PubMedCrossRefGoogle Scholar
  16. Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basanez G, Hardwick JM (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785–2797PubMedCrossRefGoogle Scholar
  17. Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337:95–103PubMedCrossRefGoogle Scholar
  18. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525PubMedCrossRefGoogle Scholar
  19. Frohlich KU, Fussi H, Ruckenstuhl C (2007) Yeast apoptosis-From genes to pathways. Semin Cancer Biol 17:112–121PubMedCrossRefGoogle Scholar
  20. Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625PubMedCrossRefGoogle Scholar
  21. Gasch AP, Werner-Washburne M (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2:181–192PubMedCrossRefGoogle Scholar
  22. Giannattasio S, Guaragnella N, Corte-Real M, Passarella S, Marra E (2005) Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354:93–98PubMedCrossRefGoogle Scholar
  23. Giannattasio S, Atlante A, Antonacci L, Guaragnella N, Lattanzio P, Passarella S, Marra E (2008) Cytochrome c is released from coupled mitochondria of yeast en route to acetic acid-induced programmed cell death and can work as an electron donor and a ROS scavenger. FEBS Lett 582:1519–1525PubMedCrossRefGoogle Scholar
  24. Goldenthal MJ, Marin-Garcia J (2004) Mitochondrial signaling pathways: a receiver/integrator organelle. Mol Cell Biochem 262:1–16PubMedCrossRefGoogle Scholar
  25. Gourlay CW, Du W, Ayscough KR (2006) Apoptosis in yeast - mechanisms and benefits to a unicellular organism. Mol Microbiol 62:1515–1521PubMedCrossRefGoogle Scholar
  26. Greenwood MT, Ludovico P (2009) Expressing and functional analysis of mammalian apoptotic regulators in yeast. Cell Death Differ 17:737–745PubMedCrossRefGoogle Scholar
  27. Gregori C, Bauer B, Schwartz C, Kren A, Schuller C, Kuchler K (2007) A genetic screen identifies mutations in the yeast WAR1 gene, linking transcription factor phosphorylation to weak-acid stress adaptation. FEBS J 274:3094–3107PubMedCrossRefGoogle Scholar
  28. Guaragnella N, Pereira C, Sousa MJ, Antonacci L, Passarella S, Corte-Real M, Marra E, Giannattasio S (2006) YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity. FEBS Lett 580:6880–6884PubMedCrossRefGoogle Scholar
  29. Guaragnella N, Antonacci L, Passarella S, Marra E, Giannattasio S (2007) Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death. Folia Microbiol 7:237–240CrossRefGoogle Scholar
  30. Guaragnella N, Antonacci L, Giannattasio S, Marra E, Passarella S (2008) Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae. FEBS Lett 582:210–214PubMedCrossRefGoogle Scholar
  31. Guaragnella N, Bobba A, Passarella S, Marra E, Giannattasio S (2010a) Yeast acetic acid-induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1. FEBS Lett 584:224–228PubMedCrossRefGoogle Scholar
  32. Guaragnella N, Passarella S, Marra E, Giannattasio S (2010b) Knock-out of metacaspase and/or cytochrome c results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast. FEBS Lett 584:3655–3660PubMedCrossRefGoogle Scholar
  33. Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, Schuller C, Kuchler K, Piper PW (2003) Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20:575–585PubMedCrossRefGoogle Scholar
  34. Hauptmann P, Lehle L (2008) Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging. J Biol Chem 283:19151–19163PubMedCrossRefGoogle Scholar
  35. Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029PubMedCrossRefGoogle Scholar
  36. Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ (1996) Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62:3158–3164PubMedGoogle Scholar
  37. Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G (2009) AIF: not just an apoptosis-inducing factor. Ann NY Acad Sci 1171:2–11PubMedCrossRefGoogle Scholar
  38. Khan MA, Chock PB, Stadtman ER (2005) Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:17326–17331PubMedCrossRefGoogle Scholar
  39. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedCrossRefGoogle Scholar
  40. Knorre DA, Smirnova EA, Severin FF (2005) Natural conditions inducing programmed cell death in the yeast Saccharomyces cerevisiae. Biochem (Mosc) 70:264–266CrossRefGoogle Scholar
  41. Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F (1983) Studies on the mechanism of the antifungal action of benzoate. Biochem J 214:657–663PubMedGoogle Scholar
  42. Kren A, Mamnun YM, Bauer BE, Schuller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23:1775–1785PubMedCrossRefGoogle Scholar
  43. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11PubMedCrossRefGoogle Scholar
  44. Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4:e1000223PubMedCrossRefGoogle Scholar
  45. Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86:157–164PubMedCrossRefGoogle Scholar
  46. Lastauskiene E, Citavicius D (2008) Influence of RAS genes on yeast Saccharomyces cerevisiae cell viability in acidic environment. Biologija 54:150–155CrossRefGoogle Scholar
  47. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598PubMedCrossRefGoogle Scholar
  48. Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors and in situ detoxification. In: Vertes A, Qureshi N, Yukawa H, Blaschek H (eds) Biomass to biofuels: strategies for global industries. Wiley, UK, pp 233–259CrossRefGoogle Scholar
  49. Longo VD (2003) The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 38:807–811PubMedCrossRefGoogle Scholar
  50. Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872PubMedCrossRefGoogle Scholar
  51. Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415PubMedGoogle Scholar
  52. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606PubMedCrossRefGoogle Scholar
  53. Ludovico P, Sansonetty F, Silva MT, Corte-Real M (2003) Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS Yeast Res 3:91–96PubMedGoogle Scholar
  54. Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734PubMedCrossRefGoogle Scholar
  55. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767PubMedCrossRefGoogle Scholar
  56. Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917PubMedCrossRefGoogle Scholar
  57. Madeo F, Carmona-Gutierrez D, Ring J, Buttner S, Eisenberg T, Kroemer G (2009) Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun 382:227–231PubMedCrossRefGoogle Scholar
  58. Martinez-Munoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319PubMedCrossRefGoogle Scholar
  59. Mollapour M, Piper P (2001a) Targeted gene deletion in Zygosaccharomyces bailii. Yeast 18:173–186PubMedCrossRefGoogle Scholar
  60. Mollapour M, Piper PW (2001b) The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mol Microbiol 42:919–930PubMedCrossRefGoogle Scholar
  61. Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6:1274–1280PubMedCrossRefGoogle Scholar
  62. Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456PubMedCrossRefGoogle Scholar
  63. Mollapour M, Shepherd A, Piper PW (2008) Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast 25:169–177PubMedCrossRefGoogle Scholar
  64. Mollapour M, Shepherd A, Piper PW (2009) Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast. Microbiology 155:3304–3311PubMedCrossRefGoogle Scholar
  65. Pearce AK, Booth IR, Brown AJ (2001) Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiology 147:403–410PubMedGoogle Scholar
  66. Pereira C, Camougrand N, Manon S, Sousa MJ, Corte-Real M (2007) ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol 66:571–582PubMedCrossRefGoogle Scholar
  67. Pereira C, Silva RD, Saraiva L, Johansson B, Sousa MJ, Corte-Real M (2008) Mitochondria-dependent apoptosis in yeast. Biochim Biophys Acta 1783:1286–1302PubMedCrossRefGoogle Scholar
  68. Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, Joao Sousa M, Corte-Real M (2010) Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol. doi: 10.1111/j.1365-2958.2010.07122.x
  69. Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783:1354–1368PubMedCrossRefGoogle Scholar
  70. Pinto I, Cardoso H, Leao C, van Uden N (1989) High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol Bioeng 33:1350–1352PubMedCrossRefGoogle Scholar
  71. Piper PW (1999) Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radic Biol Med 27:1219–1227PubMedCrossRefGoogle Scholar
  72. Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P, Kuchler K (1998) The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265PubMedCrossRefGoogle Scholar
  73. Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642PubMedGoogle Scholar
  74. Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168:257–269PubMedCrossRefGoogle Scholar
  75. Ribeiro GF, Corte-Real M, Johansson B (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell 17:4584–4591PubMedCrossRefGoogle Scholar
  76. Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, Walter P, Yaffee M (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74PubMedCrossRefGoogle Scholar
  77. Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413PubMedCrossRefGoogle Scholar
  78. Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201PubMedGoogle Scholar
  79. Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein JM, De Virgilio C, De Moor B, Winderickx J (2005) PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55:862–880PubMedCrossRefGoogle Scholar
  80. Scheckhuber CQ, Mitterbauer R, Osiewacz HD (2009) Molecular basis of and interference into degenerative processes in fungi: potential relevance for improving biotechnological performance of microorganisms. Appl Microbiol Biotechnol 85:27–35PubMedCrossRefGoogle Scholar
  81. Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389PubMedGoogle Scholar
  82. Schuller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15:706–720PubMedCrossRefGoogle Scholar
  83. Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP (2008) Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1783:1350–1353PubMedCrossRefGoogle Scholar
  84. Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, Peinado JM, Corte-Real M (2005) Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol 58:824–834PubMedCrossRefGoogle Scholar
  85. Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423:275–280PubMedCrossRefGoogle Scholar
  86. Skulachev VP, Bakeeva LE, Chernyak BV, Domnina LV, Minin AA, Pletjushkina OY, Saprunova VB, Skulachev IV, Tsyplenkova VG, Vasiliev JM, Yaguzhinsky LS, Zorov DB (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol Cell Biochem 256–257:341–358PubMedCrossRefGoogle Scholar
  87. Sokolov S, Knorre D, Smirnova E, Markova O, Pozniakovsky A, Skulachev V, Severin F (2006) Ysp2 mediates death of yeast induced by amiodarone or intracellular acidification. Biochim Biophys Acta 1757:1366–1370PubMedCrossRefGoogle Scholar
  88. Sousa MJ, Rodrigues F, Corte-Real M, Leao C (1998) Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology 144(Pt 3):665–670PubMedCrossRefGoogle Scholar
  89. Stratford M, Anslow PA (1996) Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium-chain fatty acids. FEMS Microbiol Lett 142:53–58PubMedCrossRefGoogle Scholar
  90. Stratford M, Anslow PA (1998) Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Lett Appl Microbiol 27:203–206PubMedCrossRefGoogle Scholar
  91. Sundstrom JF, Vaculova A, Smertenko AP, Savenkov EI, Golovko A, Minina E, Tiwari BS, Rodriguez-Nieto S, Zamyatnin AA Jr, Valineva T, Saarikettu J, Frilander MJ, Suarez MF, Zavialov A, Stahl U, Hussey PJ, Silvennoinen O, Sundberg E, Zhivotovsky B, Bozhkov PV (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat Cell Biol 11:1347–1354PubMedCrossRefGoogle Scholar
  92. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674PubMedCrossRefGoogle Scholar
  93. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967PubMedGoogle Scholar
  94. Vachova L, Palkova Z (2005) Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169:711–717PubMedCrossRefGoogle Scholar
  95. Valenti D, Vacca RA, Guaragnella N, Passarella S, Marra E, Giannattasio S (2008) A transient proteasome activation is needed for acetic acid-induced programmed cell death to occur in Saccharomyces cerevisiae. FEMS Yeast Res 8:400–404PubMedCrossRefGoogle Scholar
  96. Vilela-Moura A, Schuller D, Mendes-Faia A, Corte-Real M (2008) Reduction of volatile acidity of wines by selected yeast strains. Appl Microbiol Biotechnol 80:881–890PubMedCrossRefGoogle Scholar
  97. Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699PubMedCrossRefGoogle Scholar
  98. Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Frohlich KU, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974PubMedCrossRefGoogle Scholar
  99. Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103:4952–4957PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CNR, Istituto di Biomembrane e BioenergeticaBariItaly

Personalised recommendations