Advertisement

Genetics and Regulation of Glycogen and Trehalose Metabolism in Saccharomyces cerevisiae

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 22)

Abstract

Glycogen and trehalose are two important glucose stores of the yeast Saccharomyces cerevisiae, and the content of which varies strongly and rapidly in response to changing environmental conditions. Although the metabolic pathways of these two glucose stores have been studied for decades, recent biochemical and molecular studies have unraveled unexpected metabolic features, such as the ability to accumulate glycogen in the absence of glycogenin, the demonstration that acid trehalase encoded by ATH1 is localized at the cell surface instead of the vacuole and allows cells to grow on trehalose. It is also clearly demonstrated that glycogen and trehalose pathways are subject to hierarchical control dependent on major nutrient-sensing protein kinases, namely TOR, PKA, Snf1 kinase homologous to mammalian AMP-activated protein kinase (AMPK), Pho85p, and the energy sensor Pas kinase. The sophisticated control mechanisms highlight the importance of these two glucose stores in the context of growth and cell cycle of the yeast.

Keywords

Glycogen Phosphorylase Autophagy Process Trehalose Synthesis Trehalose Accumulation Glycogen Phosphorylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to many colleagues for stimulating discussion and for providing unpublished data. This study was supported by EU grants (4th and 5th Frameworks), Genopole Toulouse, Agence Nationale de la Recherche (ANR contract NT05-2_42127), and Bonus Quality Research-INSA 2009–2010.

References

  1. Alonso MD, Lagzdins EJ, Lomako J, Lomako WM, Whelan WJ (1995a) New and specific nucleoside diphosphate glucose substrates for glycogenin. FEBS Lett 359:110–112PubMedCrossRefGoogle Scholar
  2. Alonso MD, Lomako J, Lomako WM, Whelan WJ (1995b) A new look at the biogenesis of glycogen. FASEB J 9:1126–1137PubMedGoogle Scholar
  3. Amoros M, Estruch F (2001) Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol Microbiol 39:1523–1532PubMedCrossRefGoogle Scholar
  4. App H, Holzer H (1989) Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J Biol Chem 264:17583–17588PubMedGoogle Scholar
  5. Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109PubMedCrossRefGoogle Scholar
  6. Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P (2010) The Cytophaga hutchinsonii ChTPSP: first characterized bifunctional TPS-TPP protein as putative ancestor of all eukaryotic trehalose biosynthesis proteins. Mol Biol Evol 27:359–369PubMedCrossRefGoogle Scholar
  7. Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42PubMedCrossRefGoogle Scholar
  8. Baskaran S, Roach PJ, DePaoli-Roach AA, Hurley TD (2010) Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci USA 107:17563–17568PubMedCrossRefGoogle Scholar
  9. Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273:33311–33319PubMedCrossRefGoogle Scholar
  10. Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267PubMedCrossRefGoogle Scholar
  11. Blazquez MA, Lagunas R, Gancedo C, Gancedo JM (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett 329:51–54PubMedCrossRefGoogle Scholar
  12. Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182:1–8PubMedCrossRefGoogle Scholar
  13. Bonini BM, Van Dijck P, Thevelein JM (2003) Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae Tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochim Biophys Acta 1606:83–93PubMedCrossRefGoogle Scholar
  14. Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG, Botstein D (2008) Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19:352–367PubMedCrossRefGoogle Scholar
  15. Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK (2004) The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 279:20663–20671PubMedCrossRefGoogle Scholar
  16. Bulman AL, Nelson HC (2005) Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor. Proteins 58:826–835PubMedCrossRefGoogle Scholar
  17. Castrillo JI, Zeef LA, Hoyle DC, Zhang N, Hayes A, Gardner DC, Cornell MJ, Petty J, Hakes L, Wardleworth L, Rash B, Brown M, Dunn WB, Broadhurst D, O'Donoghue K, Hester SS, Dunkley TP, Hart SR, Swainston N, Li P, Gaskell SJ, Paton NW, Lilley KS, Kell DB, Oliver SG (2007) Growth control of the eukaryote cell: a systems biology study in yeast. J Biol 6:4PubMedCrossRefGoogle Scholar
  18. Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiol 146:97–107PubMedCrossRefGoogle Scholar
  19. Chen Z, Odstrcil EA, Tu BP, McKnight SL (2007) Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316:1916–1919PubMedCrossRefGoogle Scholar
  20. Cheng C, Mu J, Farkas I, Huang D, Goebl MG, Roach PJ (1995) Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 15:6632–6640PubMedGoogle Scholar
  21. Cheng C, Huang D, Roach PJ (1997) Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13:1–8PubMedCrossRefGoogle Scholar
  22. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282:699–705PubMedCrossRefGoogle Scholar
  23. Clancy MJ, Smith LM, Magee PT (1982) Developmental regulation of a sporulation-specific enzyme activity in Saccharomyces cerevisiae. Mol Cell Biol 2:171–178PubMedGoogle Scholar
  24. Clotet J, Posas F, Hu GZ, Ronne H, Arino J (1995) Role of protein phosphatase 2A in the control of glycogen metabolism in yeast. Eur J Biochem 229:207–214PubMedCrossRefGoogle Scholar
  25. Colonna WJ, Magee PT (1978) Glycogenolytic enzymes in sporulating yeast. J Bacteriol 134:844–853PubMedGoogle Scholar
  26. Conlin LK, Nelson HC (2007) The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Mol Cell Biol 27:1505–1515PubMedCrossRefGoogle Scholar
  27. Corominas J, Clotet J, Fernandez BI, Boles E, Zimmermann FK, Guinovart JJ, Arino J (1992) Glycogen metabolism in a Saccharomyces cerevisiae phosphoglucose isomerase (pgil) disruption mutant. FEBS Lett 310:182–186PubMedCrossRefGoogle Scholar
  28. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 327:425–431PubMedCrossRefGoogle Scholar
  29. Daran JM, Dallies N, Thines-Sempoux D, Paquet V, Francois J (1995) Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur J Biochem 233:520–530PubMedCrossRefGoogle Scholar
  30. Daran JM, Bell W, Francois J (1997) Physiological and morphological effects of genetic alterations leading to a reduced synthesis of UDP-glucose in Saccharomyces cerevisiae. FEMS Microbiol Lett 153:89–96PubMedCrossRefGoogle Scholar
  31. De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481PubMedCrossRefGoogle Scholar
  32. Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19:15–26PubMedCrossRefGoogle Scholar
  33. Elliott B, Haltiwanger RS, Futcher B (1996) Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics 144:923–933PubMedGoogle Scholar
  34. Enjalbert B, Parrou JL, Vincent O, Francois J (2000) Mitochondrial respiratory mutants of Saccharomyces cerevisiae accumulate glycogen and readily mobilize it in a glucose-depleted medium. Microbiology 146(Pt 10):2685–2694PubMedGoogle Scholar
  35. Enjalbert B, Parrou JL, Teste MA, Francois J (2004) Combinatorial control by the protein kinases PKA, PHO85 and SNF1 of transcriptional induction of the Saccharomyces cerevisiae GSY2 gene at the diauxic shift. Mol Genet Genomics 271:697–708PubMedCrossRefGoogle Scholar
  36. Farkas I, Hardy TA, DePaoli-Roach AA, Roach PJ (1990) Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene. J Biol Chem 265:20879–20886PubMedGoogle Scholar
  37. Farkas I, Hardy TA, Goebl MG, Roach PJ (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem 266:15602–15607PubMedGoogle Scholar
  38. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305PubMedCrossRefGoogle Scholar
  39. Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ (2009) Functional organization of the S. cerevisiae phosphorylation network. Cell 136:952–963PubMedCrossRefGoogle Scholar
  40. Fletterick RJ, Burke JA, Hwang PK, Nakano K, Newgard CB (1986) Structural relationships in glycogen phosphorylases. Ann N Y Acad Sci 478:220–232PubMedCrossRefGoogle Scholar
  41. Francois J, Hers HG (1988) The control of glycogen metabolism in yeast. 2. A kinetic study of the two forms of glycogen synthase and of glycogen phosphorylase and an investigation of their interconversion in a cell-free extract. Eur J Biochem 174:561–567PubMedCrossRefGoogle Scholar
  42. Francois J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145PubMedCrossRefGoogle Scholar
  43. Francois J, Villanueva ME, Hers HG (1988) The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers. Eur J Biochem 174:551–559PubMedCrossRefGoogle Scholar
  44. Francois J, Neves MJ, Hers HG (1991) The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7:575–587PubMedCrossRefGoogle Scholar
  45. Francois JM, Thompson-Jaeger S, Skroch J, Zellenka U, Spevak W, Tatchell K (1992) GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J 11:87–96PubMedGoogle Scholar
  46. Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3:327–331PubMedCrossRefGoogle Scholar
  47. Futcher B (2006) Metabolic cycle, cell cycle, and the finishing kick to start. Genome Biol 7:107PubMedCrossRefGoogle Scholar
  48. Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704PubMedCrossRefGoogle Scholar
  49. Gancedo C, Flores CL (2004) The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359PubMedCrossRefGoogle Scholar
  50. Garre E, Matallana E (2009) The three trehalases Nth1p, Nth2p and Ath1p participate in the mobilization of intracellular trehalose required for recovery from saline stress in Saccharomyces cerevisiae. Microbiology 155:3092–3099PubMedCrossRefGoogle Scholar
  51. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636PubMedCrossRefGoogle Scholar
  52. Gorner W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H, Schuller C (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 21:135–144PubMedCrossRefGoogle Scholar
  53. Guillou V, Plourde-Owobi L, Parrou JL, Goma G, Francois J (2004) Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae. FEMS Yeast Res 4:773–787PubMedCrossRefGoogle Scholar
  54. Han EK, Cotty F, Sottas C, Jiang H, Michels CA (1995) Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces. Mol Microbiol 17:1093–1107PubMedCrossRefGoogle Scholar
  55. Hardy TA, Roach PJ (1993) Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J Biol Chem 268:23799–23805PubMedGoogle Scholar
  56. Hazelwood LA, Walsh MC, Luttik MA, Daran-Lapujade P, Pronk JT, Daran JM (2009) Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 75:6876–6885PubMedCrossRefGoogle Scholar
  57. He S, Bystricky K, Leon S, Francois JM, Parrou JL (2009) The Saccharomyces cerevisiae vacuolar acid trehalase is targeted at the cell surface for its physiological function. FEBS J 276:5432–5446PubMedCrossRefGoogle Scholar
  58. Hohmann S, Bell W, Neves MJ, Valckx D, Thevelein JM (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Mol Microbiol 20:981–991PubMedCrossRefGoogle Scholar
  59. Huang D, Farkas I, Roach PJ (1996) Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 16:4357–4365PubMedGoogle Scholar
  60. Huang D, Wilson WA, Roach PJ (1997) Glucose-6-P control of glycogen synthase phosphorylation in yeast. J Biol Chem 272:22495–22501PubMedCrossRefGoogle Scholar
  61. Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B (1998) Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 18:3289–3299PubMedGoogle Scholar
  62. Huang J, Reggiori F, Klionsky DJ (2007) The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting. Mol Biol Cell 18:2511–2524PubMedCrossRefGoogle Scholar
  63. Hwang PK, Tugendreich S, Fletterick RJ (1989) Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol 9:1659–1666PubMedGoogle Scholar
  64. Jules M, Guillou V, Francois J, Parrou JL (2004) Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 70:2771–2778PubMedCrossRefGoogle Scholar
  65. Jules M, Francois J, Parrou JL (2005) Autonomous oscillations in Saccharomyces cerevisiae during batch cultures on trehalose. FEBS J 272:1490–1500PubMedCrossRefGoogle Scholar
  66. Jules M, Beltran G, Francois J, Parrou JL (2008) New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl Environ Microbiol 74:605–614PubMedCrossRefGoogle Scholar
  67. Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781PubMedCrossRefGoogle Scholar
  68. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O'Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643PubMedCrossRefGoogle Scholar
  69. Kuenzi MT, Fiechter A (1972) Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch Microbiol 84:254–265Google Scholar
  70. Kwon HB, Yeo ET, Hahn SE, Bae SC, Kim DY, Byun MO (2003) Cloning and characterization of genes encoding trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2) from Zygosaccharomyces rouxii. FEMS Yeast Res 3:433–440PubMedCrossRefGoogle Scholar
  71. Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 18:30–38PubMedGoogle Scholar
  72. Lin K, Hwang PK, Fletterick RJ (1995) Mechanism of regulation in yeast glycogen phosphorylase. J Biol Chem 270:26833–26839PubMedCrossRefGoogle Scholar
  73. Lin K, Rath VL, Dai SC, Fletterick RJ, Hwang PK (1996) A protein phosphorylation switch at the conserved allosteric site in GP. Science 273:1539–1542PubMedCrossRefGoogle Scholar
  74. Lomako J, Lomako WM, Whelan WJ (2004) Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochim Biophys Acta 1673:45–55PubMedCrossRefGoogle Scholar
  75. Londesborough J, Varimo K (1984) Characterization of two trehalases in baker’s yeast. Biochem J 219:511–518PubMedGoogle Scholar
  76. Londesborough J, Vuorio OE (1993) Purification of trehalose synthase from baker’s yeast. Its temperature-dependent activation by fructose 6-phosphate and inhibition by phosphate. Eur J Biochem 216:841–848PubMedCrossRefGoogle Scholar
  77. Mahmud SA, Nagahisa K, Hirasawa T, Yoshikawa K, Ashitani K, Shimizu H (2009) Effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae. Yeast 26:17–30PubMedCrossRefGoogle Scholar
  78. Melendez R, Melendez-Hevia E, Canela EI (1999) The fractal structure of glycogen: a clever solution to optimize cell metabolism. Biophys J 77:1327–1332PubMedCrossRefGoogle Scholar
  79. Muller D, Exler S, Aguilera-Vazquez L, Guerrero-Martin E, Reuss M (2003) Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Yeast 20:351–367PubMedCrossRefGoogle Scholar
  80. Neves MJ, Jorge JA, Francois JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen, and on the induction of thermotolerance in Neurospora crassa. FEBS Lett 283:19–22PubMedCrossRefGoogle Scholar
  81. Ni HT, LaPorte DC (1995) Response of a yeast glycogen synthase gene to stress. Mol Microbiol 16:1197–1205PubMedCrossRefGoogle Scholar
  82. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966PubMedCrossRefGoogle Scholar
  83. Nwaka S, Mechler B, Destruelle M, Holzer H (1995) Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett 360:286–290PubMedCrossRefGoogle Scholar
  84. Nwaka S, Mechler B, Holzer H (1996) Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett 386:235–238PubMedCrossRefGoogle Scholar
  85. Paalman JW, Verwaal R, Slofstra SH, Verkleij AJ, Boonstra J, Verrips CT (2003) Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae. FEMS Yeast Res 3:261–268PubMedGoogle Scholar
  86. Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA (2006) A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem 281:4638–4645PubMedCrossRefGoogle Scholar
  87. Panni S, Landgraf C, Volkmer-Engert R, Cesareni G, Castagnoli L (2008) Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8:53–63PubMedCrossRefGoogle Scholar
  88. Parrou JL, Teste MA, François J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900PubMedCrossRefGoogle Scholar
  89. Parrou JL, Enjalbert B, Francois J (1999a) STRE- and cAMP-independent transcriptional induction of Saccharomyces cerevisiae GSY2 encoding glycogen synthase during diauxic growth on glucose. Yeast 15:1471–1484PubMedCrossRefGoogle Scholar
  90. Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, Francois J (1999b) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203PubMedCrossRefGoogle Scholar
  91. Parrou JL, Jules M, Beltran G, Francois J (2005) Acid trehalase in yeasts and filamentous fungi: localization, regulation and physiological function. FEMS Yeast Res 5:503–511PubMedCrossRefGoogle Scholar
  92. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441PubMedCrossRefGoogle Scholar
  93. Pederson BA, Cheng C, Wilson WA, Roach PJ (2000) Regulation of glycogen synthase. Identification of residues involved in regulation by the allosteric ligand glucose-6-P and by phosphorylation. J Biol Chem 275:27753–27761PubMedGoogle Scholar
  94. Pederson BA, Wilson WA, Roach PJ (2004) Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem 279:13764–13768PubMedCrossRefGoogle Scholar
  95. Pedreno Y, Gimeno-Alcaniz JV, Matallana E, Arguelles JC (2002) Response to oxidative stress caused by H(2)O(2) in Saccharomyces cerevisiae mutants deficient in trehalase genes. Arch Microbiol 177:494–499PubMedCrossRefGoogle Scholar
  96. Pedruzzi I, Burckert N, Egger P, De Virgilio C (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19:2569–2579PubMedCrossRefGoogle Scholar
  97. Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J, De Virgilio C (2003) TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12:1607–1613PubMedCrossRefGoogle Scholar
  98. Peng ZY, Trumbly RJ, Reimann EM (1990) Purification and characterization of glycogen synthase from a glycogen- deficient strain of Saccharomyces cerevisiae. J Biol Chem 265:13871–13877PubMedGoogle Scholar
  99. Plourde-Owobi L, Durner S, Parrou JL, Wieczorke R, Goma G, Francois J (1999) AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. J Bacteriol 181:3830–3832PubMedGoogle Scholar
  100. Posas F, Clotet J, Muns MT, Corominas J, Casamayor A, Arino J (1993) The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation. J Biol Chem 268:1349–1354PubMedGoogle Scholar
  101. Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Res 6:902–913PubMedCrossRefGoogle Scholar
  102. Reinders A, Burckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, De Virgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–695PubMedCrossRefGoogle Scholar
  103. Rutter J, Probst BL, McKnight SL (2002) Coordinate regulation of sugar flux and translation by PAS kinase. Cell 111:17–28PubMedCrossRefGoogle Scholar
  104. Santhanam A, Hartley A, Duvel K, Broach JR, Garrett S (2004) PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryot Cell 3:1261–1271PubMedCrossRefGoogle Scholar
  105. Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Biol Cell 15:5492–5502PubMedCrossRefGoogle Scholar
  106. Sillje HHW, Paalman JWG, ter Schure EG, Olsthoorn SQB, Verkleij AJ, Boonstra J, Verrips CT (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol 181:396–400PubMedGoogle Scholar
  107. Silva-Udawatta MN, Cannon JF (2001) Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Mol Microbiol 40:1345–1356PubMedCrossRefGoogle Scholar
  108. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648PubMedCrossRefGoogle Scholar
  109. Skroch Stuart J, Frederick DL, Varner CM, Tatchell K (1994) The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1- encoded regulatory subunit. Mol Cell Biol 14:896–905Google Scholar
  110. Slattery MG, Liko D, Heideman W (2008) Protein kinase A, TOR, and glucose transport control the response to nutrient repletion in Saccharomyces cerevisiae. Eukaryot Cell 7:358–367PubMedCrossRefGoogle Scholar
  111. Smith TL, Rutter J (2007) Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Mol Cell 26:491–499PubMedCrossRefGoogle Scholar
  112. Sunnarborg SW, Miller SP, Unnikrishnan I, LaPorte DC (2001) Expression of the yeast glycogen phosphorylase gene is regulated by stress-response elements and by the HOG MAP kinase pathway. Yeast 18:1505–1514PubMedCrossRefGoogle Scholar
  113. Teste MA, Enjalbert B, Parrou JL, Francois JM (2000) The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme. FEMS Microbiol Lett 193:105–110PubMedCrossRefGoogle Scholar
  114. Teste MA, Duquenne M, Francois JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99PubMedCrossRefGoogle Scholar
  115. Thon VJ, Vigneron LC, Marianne PT, Montreuil J, Decq A, Rachez C, Ball SG, Cannon JF (1992) Coordinate regulation of glycogen metabolism in the yeast Saccharomyces cerevisiae. Induction of glycogen branching enzyme. J Biol Chem 267:15224–15228PubMedGoogle Scholar
  116. Timblin BK, Bergman LW (1997) Elevated expression of stress response genes resulting from deletion of the PHO85 gene. Mol Microbiol 26:981–990PubMedCrossRefGoogle Scholar
  117. Timblin BK, Tatchell K, Bergman LW (1996) Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae. Genetics 143:57–66PubMedGoogle Scholar
  118. Torija MJ, Novo M, Lemassu A, Wilson W, Roach PJ, Francois J, Parrou JL (2005) Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae. FEBS Lett 579:3999–4004PubMedCrossRefGoogle Scholar
  119. Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–1158PubMedCrossRefGoogle Scholar
  120. Ugalde JE, Parodi AJ, Ugalde RA (2003) De novo synthesis of bacterial glycogen: agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci USA 100:10659–10663PubMedCrossRefGoogle Scholar
  121. Van Aelst L, Hohmann S, Zimmermann FK, Jans AW, Thevelein JM (1991) A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO J 10:2095–2104PubMedGoogle Scholar
  122. van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359PubMedCrossRefGoogle Scholar
  123. Vandercammen A, Francois J, Hers HG (1989) Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. Eur J Biochem 182:613–620PubMedCrossRefGoogle Scholar
  124. Versele M, Thevelein JM, Van Dijck P (2004) The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Yeast 21:75–86PubMedCrossRefGoogle Scholar
  125. Voit EO (2003) Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. J Theor Biol 223:55–78PubMedCrossRefGoogle Scholar
  126. Walther T, Novo M, Rossger K, Letisse F, Loret MO, Portais JC, Francois JM (2010) Control of ATP homeostasis during the respiro-fermentative transition in yeast. Mol Syst Biol 6:344PubMedCrossRefGoogle Scholar
  127. Wang Z, Wilson WA, Fujino MA, Roach PJ (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21:5742–5752PubMedCrossRefGoogle Scholar
  128. Ward MP, Gimeno CJ, Fink GR, Garrett S (1995) SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 15:6854–6863PubMedGoogle Scholar
  129. Wera S, De Schrijver E, Geyskens I, Nwaka S, Thevelein JM (1999) Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem J 343:621–626PubMedCrossRefGoogle Scholar
  130. Wilson WA, Mahrenholz AM, Roach PJ (1999) Substrate targeting of the yeast cyclin-dependent kinase pho85p by the cyclin pcl10p. Mol Cell Biol 19:7020–7030PubMedGoogle Scholar
  131. Wilson WA, Wang Z, Roach PJ (2002a) Analysis of respiratory mutants reveals new aspects of the control of glycogen accumulation by the cyclin-dependent protein kinase Pho85p. FEBS Lett 515:104–108PubMedCrossRefGoogle Scholar
  132. Wilson WA, Wang Z, Roach PJ (2002b) Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 1:232–242PubMedCrossRefGoogle Scholar
  133. Wilson WA, Hughes WE, Tomamichel W, Roach PJ (2004) Increased glycogen storage in yeast results in less branched glycogen. Biochem Biophys Res Commun 320:416–423PubMedCrossRefGoogle Scholar
  134. Wilson WA, Wang Z, Roach PJ (2005) Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p. Biochem Biophys Res Commun 329:161–167PubMedCrossRefGoogle Scholar
  135. Winderickx J, de WJ, Crauwels M, Hino A, Hohmann S, Van DP, Thevelein JM (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control. Mol Gen Genet 252:470–482PubMedGoogle Scholar
  136. Wu X, Hart H, Cheng C, Roach PJ, Tatchell K (2001) Characterization of Gac1p, a regulatory subunit of protein phosphatase type I involved in glycogen accumulation in Saccharomyces cerevisiae. Mol Genet Genomics 265:622–635PubMedCrossRefGoogle Scholar
  137. Xu Z, Tsurugi K (2006) A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. FEBS J 273:1696–1709PubMedCrossRefGoogle Scholar
  138. Xu Z, Tsurugi K (2007) Destabilization of energy-metabolism oscillation in the absence of trehalose synthesis in the chemostat culture of yeast. Arch Biochem Biophys 464:350–358PubMedCrossRefGoogle Scholar
  139. Yorimitsu T, Zaman S, Broach JR, Klionsky DJ (2007) Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18:4180–4189PubMedCrossRefGoogle Scholar
  140. Zahringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35:397–406PubMedCrossRefGoogle Scholar
  141. Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81PubMedCrossRefGoogle Scholar
  142. Zurita-Martinez SA, Cardenas ME (2005) Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot Cell 4:63–71PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.INSA UPS INP & INRAUniversity of ToulouseToulouseFrance
  2. 2.CNRS-UMR 5504ToulouseFrance
  3. 3.INRA-UMR 792 Ingénierie des Systèmes Biologiques et procédésToulouseFrance

Personalised recommendations