Advertisement

Automated Systems of Plasmid-Based Functional Proteomics to Improve Microbes for Biofuel Production

Chapter
  • 1.1k Downloads
Part of the Microbiology Monographs book series (MICROMONO, volume 22)

Abstract

Plasmid-based functional proteomics is an important technology for rapidly obtaining large quantities of protein and determining protein function across an entire genome. It centers on production of full-length cDNA libraries as a source of plasmid-based clones to express the desired proteins in active form to determine their function. Because plasmid libraries are composed of several thousand unique genes, automation of the process is essential. High-throughput platforms that can rapidly clone and express heterologous gene open reading frames (ORFs) in bacteria and yeast and can screen large numbers of expressed proteins for optimized function are important for improving microbial strains for biofuel production. Combined with rapid gene assembly and mutagenesis strategies, gene ORFs can be synthesized, cloned, transformed into yeast strains, and screened to identify those that will give increased ethanol production, allow coproduction of biodiesel, enable use of biomass as a feedstock, and express valuable coproducts. The approach for the past 10 years has been to overexpress proteins that enable microbes to perform functions allowing improved production of biofuels. The next step will be to generate stable strains containing the genes that overexpress these proteins. This will need to be coupled with technologies such as Western blot analysis, high-throughput microscopy, mass spectrometry, gas chromatography, Raman spectroscopy, and microarray analysis to identify critical pathways and metabolites. These techniques adapted to an automated systems biology platform will allow tailoring of microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries.

Keywords

Ethanol Production Robotic Platform Xylose Isomerase Fatty Acid Ethyl Ester Gene ORFs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akoh CC, Chang S-W, Lee G-C, Shaw J-F (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55(22):8995–9005PubMedCrossRefGoogle Scholar
  2. Baglioni P, Bini L, Liberatori S, Pallini V, Marri L (2003) Proteome analysis of Escherichia coli W3110 expressing an heterologous sigma factor. Proteomics 3(6):1060–1065PubMedCrossRefGoogle Scholar
  3. Betton JM (2004) High throughput cloning and expression strategies for protein production. Biochimie 86(9–10):601–605PubMedCrossRefGoogle Scholar
  4. Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expression Purif 43:1–9CrossRefGoogle Scholar
  5. Chen H, Li X-L, Blum DL, Ximenes EA, Ljungdahl LG (2003) CelF of Orpinomyces PC-2 has an intron and encodes a cellulase (CelF), containing a carbohydrate binding module. Appl Biochem Biotechnol 105–108:775–785PubMedCrossRefGoogle Scholar
  6. Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110(1):119–122PubMedCrossRefGoogle Scholar
  7. Den Haan R, McBride JE, La Grange DC, Lynd LR, Van Zyl WH (2007) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299CrossRefGoogle Scholar
  8. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508PubMedCrossRefGoogle Scholar
  9. Fernández-Lorente GR, Fernández-Lafuente R, Palomo JM, Mateo C, Bastida A, Coca J, Haramboure T, Hernández-Justiz O, Terreni M, Guisán JM (2001) Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized ipases in aqueous medium. J Mol Catal B Enzym 11(4–6):649–656CrossRefGoogle Scholar
  10. Finley JB, Qiu SH, Luan CH, Luo M (2004) Structural genomics for Caenorhabditis elegans: high throughput protein expression analysis. Protein Expression Purif 34(1):49–55CrossRefGoogle Scholar
  11. Gluck A, Wool IG (2002) Analysis by systematic deletion of amino acids of the action of the ribotoxin restrictocin. Biochim Biophys Acta 1594(1):115–126PubMedCrossRefGoogle Scholar
  12. Goda N, Tenno T, Takasu H, Hiroaki H, Shirakawa M (2004) The PRESAT-vector: asymmetric T-vector for high throughput screening of soluble protein domains for structural proteomics. Protein Sci 13(3):652–658PubMedCrossRefGoogle Scholar
  13. Grimm S, Kachel V (2002) Robotic high throughput assay for isolating apoptosis-inducing genes. Biotechniques 32(3):672–677Google Scholar
  14. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953PubMedCrossRefGoogle Scholar
  15. Ho K, Xiao Q, Fach EM, Hulmes JD, Bethea D, Opiteck GJ, Lu JY, Kayne PS, Hefta SA (2004) Semi-automated sample preparation for plasma proteomics. J Assoc Lab Autom 9:238–249CrossRefGoogle Scholar
  16. Holz C, Lueking A, Bovekamp L, Gutjahr C, Bolotina N, Lehrach H, Cahill DJ (2001) A human cDNA expression library in yeast enriched for open reading frames. Genome Res 11(10):1730–1735PubMedCrossRefGoogle Scholar
  17. Hughes SR, Riedmuller SB, Mertens JA, Li X-L, Bischoff KM, Cotta MA, Farrelly PJ (2005) Development of a liquid handler component for a plasmid-based functional proteomic robotic workcell. J Assoc Lab Autom 10(5):287–300CrossRefGoogle Scholar
  18. Hughes SR, Riedmuller SB, Mertens JA, Li X-L, Bischoff KM, Qureshi N, Cotta MA, Farrelly PJ (2006) High throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell. Proteome Sci 4:10PubMedCrossRefGoogle Scholar
  19. Hughes SR, Dowd PF, Hector RE, Riedmuller SB, Bartolett S, Mertens JA, Qureshi N, Liu S, Bischoff KM, Li X-L, Jackson JS Jr, Sterner D, Panavas T, Rich JO, Farrelly PJ, Butt TR, Cotta MA (2007) Cost-effective high throughput fully automated construction of a multiplex library of mutagenized open reading frames for an insecticidal peptide using a plasmid-based functional proteomic robotic workcell with improved vacuum system. J Assoc Lab Autom 12(4):202–212CrossRefGoogle Scholar
  20. Hughes SR, Sterner DE, Bischoff KM, Hector RE, Dowd PF, Qureshi N, Bang SS, Grynaviski N, Chakrabarty T, Johnson ET, Dien BS, Mertens JA, Caughey RJ, Liu S, Butt TR, LaBaer J, Cotta MA, Rich JO (2008a) Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid 61(1):22–38PubMedCrossRefGoogle Scholar
  21. Hughes SR, Dowd PF, Hector RE, Panavas T, Sterner DE, Qureshi N, Bischoff KM, Bang SS, Mertens JA, Johnson ET, Li X-L, Jackson JS Jr, Caughey RJ, Riedmuller SB, Bartolett S, Liu S, Rich JO, Farrelly PJ, Butt TR, LaBaer J, Cotta MA (2008b) Lycotoxin-1 insecticidal peptide optimized by amino scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain. J Pept Sci 14(9):1039–1050PubMedCrossRefGoogle Scholar
  22. Hughes SR, Hector RE, Rich JO, Qureshi N, Bischoff KM, Dien BS, Saha BC, Liu S, Cox EJ, Jackson JS Jr, Sterner DE, Butt TR, LaBaer J, Cotta MA (2009a) Automated yeast mating protocol using open reading frames from Saccharomyces cerevisiae genome to improve yeast strains for cellulosic ethanol production. J Assoc Lab Autom 14:190–199CrossRefGoogle Scholar
  23. Hughes SR, Rich JO, Bischoff KM, Hector RE, Qureshi N, Saha BC, Dien BS, Liu S, Jackson JS, Sterner DE, Butt TR, LaBaer J, Cotta MA (2009b) Automated yeast transformation protocol to engineer Saccharomyces cerevisiae strains for improved cellulosic ethanol production with open reading frames that express proteins binding to xylose isomerase identified using a robotic two-hybrid screen. J Assoc Lab Autom 14:200–212CrossRefGoogle Scholar
  24. Hughes SR, Moser BR, Harmsen AJ, Bischoff KM, Jones MA, Pinkelman BA, Bang SB, Tasaki K, Doll MD, Qureshi N., Saha BC, Liu S, Jackson JS Jr, Robinson S, Cotta MA, Rich JO, Caimi BA (2011) Production of Candida antarctica Lipase B Gene Open Reading Frame Using Automated PCR Gene Assembly Protocol on Robotic Workcell and Expression in an Ethanologenic Yeast for Use As Resin-Bound Biocatalyst in Biodiesel Production. J Lab Autom 16(1):17–37PubMedCrossRefGoogle Scholar
  25. Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69(1):495–503PubMedCrossRefGoogle Scholar
  26. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grausland MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368PubMedCrossRefGoogle Scholar
  27. Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund M-F (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Factories 6:5CrossRefGoogle Scholar
  28. Kornienko M, Montalvo A, Carpenter BE, Lenard M, Abeywickrema P, Hall DL, Darke PL, Kuo LC (2005) Protein expression plasmids produced rapidly: streamlining cloning protocols and robotic handling. Assay Drug Dev Technol 3(6):661–674PubMedCrossRefGoogle Scholar
  29. Kourie JI, Shorthouse AA (2000) Properties of cytotoxic peptide-formed ion channels. Am J Physiol Cell Physiol 278:C1063–C1087PubMedGoogle Scholar
  30. Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78PubMedCrossRefGoogle Scholar
  31. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4(6):655–664PubMedCrossRefGoogle Scholar
  32. Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409PubMedCrossRefGoogle Scholar
  33. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934PubMedCrossRefGoogle Scholar
  34. Lanio T, Jeltsch A, Pingoud A (2000) Automated purification of His6-tagged proteins allows exhaustive screening of libraries generated by random mutagenesis. Biotechniques 29(2):338–342PubMedGoogle Scholar
  35. Lee PS, Lee KH (2005) Engineering HlyA hypersecretion in Escherichia coli based on proteomic and microarray analyses. Biotechnol Bioeng 89(2):195–205PubMedCrossRefGoogle Scholar
  36. Lefkovits I, Kettman JR, Frey JR (2001) Proteomic analysis of rare molecular species of translated polypeptides from a mouse fetal thymus cDNA library. Proteomics 1(4):560–573PubMedCrossRefGoogle Scholar
  37. Li S-J, Hochstrasser M (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 160(7):1069–1081PubMedCrossRefGoogle Scholar
  38. Lorenz MGO (2004) Liquid-handling robotic workstations for functional genomics. J Assoc Lab Autom 9:262–267CrossRefGoogle Scholar
  39. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struc Func Genomics 5(1–2):75–86CrossRefGoogle Scholar
  40. Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110(8):692–700CrossRefGoogle Scholar
  41. Norais N, Nogarotto R, Lacobini ET, Garaguso I, Grifantini R, Gauli G, Grandi G (2001) Combined automated PCR cloning, in vitro transcription/translation and two-dimensional electrophoresis for bacterial proteome analysis. Proteomics 1(11):1378–1389PubMedCrossRefGoogle Scholar
  42. Pajak L, Zhang R, Pittman C, Roby K, Boyer S (2004) Automated genomic and proteomic applications on the Biomek® NX laboratory automation workstation. J Assoc Lab Autom 9:177–184CrossRefGoogle Scholar
  43. Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215PubMedCrossRefGoogle Scholar
  44. Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Lidén G (2007) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99(4):783–790CrossRefGoogle Scholar
  45. Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW, Broughton WJ, Deakin WJ (2005) NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J Bacteriol 187(3):1173–1181PubMedCrossRefGoogle Scholar
  46. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291PubMedCrossRefGoogle Scholar
  47. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21(3):816–822PubMedCrossRefGoogle Scholar
  48. Salis A, Bhattacharyya MS, Monduzzi M, Solinas V (2009) Role of the support surface on the loading and the activity of Pseudomonas fluorescens lipase used for biodiesel synthesis. J Mol Catal B Enzym 57:262–269CrossRefGoogle Scholar
  49. Sebastian P, Wallwitz J, Schmidt S (2003) Semi automated production of a set of different recombinant GST-streptag fusion proteins. J Chromatogr B Anal Technol Biomed Life Sci 786(1–2):343–355CrossRefGoogle Scholar
  50. Sedlak M, Ho NWY (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 114(1–3):403–416CrossRefGoogle Scholar
  51. Shaw AC, Gevaert K, Demol H, Hoorelbeke B, Vandekerckhove J, Larsen MR, Roepstorff P, Holm A, Christiansen G, Birkelund S (2002) Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2(2):164–186PubMedCrossRefGoogle Scholar
  52. Sheng W, Liao X (2002) Solution structure of a yeast ubiquitin-like protein Smt3: the role of structurally less defined sequences in protein-protein recognitions. Protein Sci 11:1482–1491PubMedCrossRefGoogle Scholar
  53. Shibasaki-Kitakawa N, Honda H, Kuribayashi H, Toda T, Fukumura T, Yonemoto T (2007) Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresour Technol 98(2):416–421PubMedCrossRefGoogle Scholar
  54. Sterner DE, Grant PA, Roberts SM, Duggan LJ, Belotserkovskaya R, Pacella LA, Winston F, Workman JL, Berger SL (1999) Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 19(1):86–98PubMedGoogle Scholar
  55. Torres R, Mateo C, Fernández-Lorente G, Ortiz C, Fuentes M, Palomo JM, Guisán JM, Fernández-Lafuente R (2003) A novel heterofunctional epoxy-amino Sepabeads for a new enzyme immobilization protocol: immobilization-stabilization of beta-galactosidase from Aspergillus oryzae. Biotechnol Prog 19(3):1056–1060PubMedCrossRefGoogle Scholar
  56. Trabbic-Carlson K, Liu L, Kim B, Chilkoti A (2004) Expression and purification of recombinant proteins from Escherichia coli: comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. Protein Sci 13(12):3274–3284PubMedCrossRefGoogle Scholar
  57. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627PubMedCrossRefGoogle Scholar
  58. Van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90(4):391–418PubMedCrossRefGoogle Scholar
  59. Van Maris AJA, Winkler AA, Kuyper M, de Laat WTAM, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204PubMedGoogle Scholar
  60. Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B Enzym 9(4–6):113–148CrossRefGoogle Scholar
  61. Wang W, Malcolm BA (1999) Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26(4):680–682PubMedGoogle Scholar
  62. Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJA (2007) Engineering of saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73(15):4881–4891Google Scholar
  63. Yan L, Adams ME (1998) Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J Biol Chem 273(4):2059–2066PubMedCrossRefGoogle Scholar
  64. Zuo D, Mohr SE, Hu Y, Taycher E, Rolfs A, Kramer J, Williamson J, LaBaer J (2007) PlasmID: a centralized repository for plasmid clone information and distribution. Nucleic Acids Res 35(Database issue):D680–D684PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.United States Department of AgricultureAgricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research UnitPeoriaUSA
  2. 2.LifeSensors, Inc.MalvernUSA
  3. 3.Robotic Software, Robotic Vision, and Robotic Scheduling UnitsBartolett Enterprises, Inc.BridgewaterUSA
  4. 4.Laboratory Workcell Robotics and Integration Design DivisionBlackland Manufacturing, Inc.Round RockUSA

Personalised recommendations