Skip to main content

Automated Systems of Plasmid-Based Functional Proteomics to Improve Microbes for Biofuel Production

  • Chapter
  • First Online:
Microbial Stress Tolerance for Biofuels

Part of the book series: Microbiology Monographs ((MICROMONO,volume 22))

Abstract

Plasmid-based functional proteomics is an important technology for rapidly obtaining large quantities of protein and determining protein function across an entire genome. It centers on production of full-length cDNA libraries as a source of plasmid-based clones to express the desired proteins in active form to determine their function. Because plasmid libraries are composed of several thousand unique genes, automation of the process is essential. High-throughput platforms that can rapidly clone and express heterologous gene open reading frames (ORFs) in bacteria and yeast and can screen large numbers of expressed proteins for optimized function are important for improving microbial strains for biofuel production. Combined with rapid gene assembly and mutagenesis strategies, gene ORFs can be synthesized, cloned, transformed into yeast strains, and screened to identify those that will give increased ethanol production, allow coproduction of biodiesel, enable use of biomass as a feedstock, and express valuable coproducts. The approach for the past 10 years has been to overexpress proteins that enable microbes to perform functions allowing improved production of biofuels. The next step will be to generate stable strains containing the genes that overexpress these proteins. This will need to be coupled with technologies such as Western blot analysis, high-throughput microscopy, mass spectrometry, gas chromatography, Raman spectroscopy, and microarray analysis to identify critical pathways and metabolites. These techniques adapted to an automated systems biology platform will allow tailoring of microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akoh CC, Chang S-W, Lee G-C, Shaw J-F (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55(22):8995–9005

    Article  PubMed  CAS  Google Scholar 

  • Baglioni P, Bini L, Liberatori S, Pallini V, Marri L (2003) Proteome analysis of Escherichia coli W3110 expressing an heterologous sigma factor. Proteomics 3(6):1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Betton JM (2004) High throughput cloning and expression strategies for protein production. Biochimie 86(9–10):601–605

    Article  PubMed  CAS  Google Scholar 

  • Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expression Purif 43:1–9

    Article  CAS  Google Scholar 

  • Chen H, Li X-L, Blum DL, Ximenes EA, Ljungdahl LG (2003) CelF of Orpinomyces PC-2 has an intron and encodes a cellulase (CelF), containing a carbohydrate binding module. Appl Biochem Biotechnol 105–108:775–785

    Article  PubMed  Google Scholar 

  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110(1):119–122

    Article  PubMed  CAS  Google Scholar 

  • Den Haan R, McBride JE, La Grange DC, Lynd LR, Van Zyl WH (2007) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299

    Article  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Lorente GR, Fernández-Lafuente R, Palomo JM, Mateo C, Bastida A, Coca J, Haramboure T, Hernández-Justiz O, Terreni M, Guisán JM (2001) Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized ipases in aqueous medium. J Mol Catal B Enzym 11(4–6):649–656

    Article  Google Scholar 

  • Finley JB, Qiu SH, Luan CH, Luo M (2004) Structural genomics for Caenorhabditis elegans: high throughput protein expression analysis. Protein Expression Purif 34(1):49–55

    Article  CAS  Google Scholar 

  • Gluck A, Wool IG (2002) Analysis by systematic deletion of amino acids of the action of the ribotoxin restrictocin. Biochim Biophys Acta 1594(1):115–126

    Article  PubMed  CAS  Google Scholar 

  • Goda N, Tenno T, Takasu H, Hiroaki H, Shirakawa M (2004) The PRESAT-vector: asymmetric T-vector for high throughput screening of soluble protein domains for structural proteomics. Protein Sci 13(3):652–658

    Article  PubMed  CAS  Google Scholar 

  • Grimm S, Kachel V (2002) Robotic high throughput assay for isolating apoptosis-inducing genes. Biotechniques 32(3):672–677

    Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    Article  PubMed  Google Scholar 

  • Ho K, Xiao Q, Fach EM, Hulmes JD, Bethea D, Opiteck GJ, Lu JY, Kayne PS, Hefta SA (2004) Semi-automated sample preparation for plasma proteomics. J Assoc Lab Autom 9:238–249

    Article  CAS  Google Scholar 

  • Holz C, Lueking A, Bovekamp L, Gutjahr C, Bolotina N, Lehrach H, Cahill DJ (2001) A human cDNA expression library in yeast enriched for open reading frames. Genome Res 11(10):1730–1735

    Article  PubMed  CAS  Google Scholar 

  • Hughes SR, Riedmuller SB, Mertens JA, Li X-L, Bischoff KM, Cotta MA, Farrelly PJ (2005) Development of a liquid handler component for a plasmid-based functional proteomic robotic workcell. J Assoc Lab Autom 10(5):287–300

    Article  CAS  Google Scholar 

  • Hughes SR, Riedmuller SB, Mertens JA, Li X-L, Bischoff KM, Qureshi N, Cotta MA, Farrelly PJ (2006) High throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell. Proteome Sci 4:10

    Article  PubMed  Google Scholar 

  • Hughes SR, Dowd PF, Hector RE, Riedmuller SB, Bartolett S, Mertens JA, Qureshi N, Liu S, Bischoff KM, Li X-L, Jackson JS Jr, Sterner D, Panavas T, Rich JO, Farrelly PJ, Butt TR, Cotta MA (2007) Cost-effective high throughput fully automated construction of a multiplex library of mutagenized open reading frames for an insecticidal peptide using a plasmid-based functional proteomic robotic workcell with improved vacuum system. J Assoc Lab Autom 12(4):202–212

    Article  CAS  Google Scholar 

  • Hughes SR, Sterner DE, Bischoff KM, Hector RE, Dowd PF, Qureshi N, Bang SS, Grynaviski N, Chakrabarty T, Johnson ET, Dien BS, Mertens JA, Caughey RJ, Liu S, Butt TR, LaBaer J, Cotta MA, Rich JO (2008a) Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid 61(1):22–38

    Article  PubMed  Google Scholar 

  • Hughes SR, Dowd PF, Hector RE, Panavas T, Sterner DE, Qureshi N, Bischoff KM, Bang SS, Mertens JA, Johnson ET, Li X-L, Jackson JS Jr, Caughey RJ, Riedmuller SB, Bartolett S, Liu S, Rich JO, Farrelly PJ, Butt TR, LaBaer J, Cotta MA (2008b) Lycotoxin-1 insecticidal peptide optimized by amino scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain. J Pept Sci 14(9):1039–1050

    Article  PubMed  CAS  Google Scholar 

  • Hughes SR, Hector RE, Rich JO, Qureshi N, Bischoff KM, Dien BS, Saha BC, Liu S, Cox EJ, Jackson JS Jr, Sterner DE, Butt TR, LaBaer J, Cotta MA (2009a) Automated yeast mating protocol using open reading frames from Saccharomyces cerevisiae genome to improve yeast strains for cellulosic ethanol production. J Assoc Lab Autom 14:190–199

    Article  CAS  Google Scholar 

  • Hughes SR, Rich JO, Bischoff KM, Hector RE, Qureshi N, Saha BC, Dien BS, Liu S, Jackson JS, Sterner DE, Butt TR, LaBaer J, Cotta MA (2009b) Automated yeast transformation protocol to engineer Saccharomyces cerevisiae strains for improved cellulosic ethanol production with open reading frames that express proteins binding to xylose isomerase identified using a robotic two-hybrid screen. J Assoc Lab Autom 14:200–212

    Article  CAS  Google Scholar 

  • Hughes SR, Moser BR, Harmsen AJ, Bischoff KM, Jones MA, Pinkelman BA, Bang SB, Tasaki K, Doll MD, Qureshi N., Saha BC, Liu S, Jackson JS Jr, Robinson S, Cotta MA, Rich JO, Caimi BA (2011) Production of Candida antarctica Lipase B Gene Open Reading Frame Using Automated PCR Gene Assembly Protocol on Robotic Workcell and Expression in an Ethanologenic Yeast for Use As Resin-Bound Biocatalyst in Biodiesel Production. J Lab Autom 16(1):17–37

    Article  PubMed  CAS  Google Scholar 

  • Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69(1):495–503

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grausland MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund M-F (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Factories 6:5

    Article  Google Scholar 

  • Kornienko M, Montalvo A, Carpenter BE, Lenard M, Abeywickrema P, Hall DL, Darke PL, Kuo LC (2005) Protein expression plasmids produced rapidly: streamlining cloning protocols and robotic handling. Assay Drug Dev Technol 3(6):661–674

    Article  PubMed  CAS  Google Scholar 

  • Kourie JI, Shorthouse AA (2000) Properties of cytotoxic peptide-formed ion channels. Am J Physiol Cell Physiol 278:C1063–C1087

    PubMed  CAS  Google Scholar 

  • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4(6):655–664

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  PubMed  CAS  Google Scholar 

  • Lanio T, Jeltsch A, Pingoud A (2000) Automated purification of His6-tagged proteins allows exhaustive screening of libraries generated by random mutagenesis. Biotechniques 29(2):338–342

    PubMed  CAS  Google Scholar 

  • Lee PS, Lee KH (2005) Engineering HlyA hypersecretion in Escherichia coli based on proteomic and microarray analyses. Biotechnol Bioeng 89(2):195–205

    Article  PubMed  CAS  Google Scholar 

  • Lefkovits I, Kettman JR, Frey JR (2001) Proteomic analysis of rare molecular species of translated polypeptides from a mouse fetal thymus cDNA library. Proteomics 1(4):560–573

    Article  PubMed  CAS  Google Scholar 

  • Li S-J, Hochstrasser M (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 160(7):1069–1081

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MGO (2004) Liquid-handling robotic workstations for functional genomics. J Assoc Lab Autom 9:262–267

    Article  Google Scholar 

  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struc Func Genomics 5(1–2):75–86

    Article  CAS  Google Scholar 

  • Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110(8):692–700

    Article  CAS  Google Scholar 

  • Norais N, Nogarotto R, Lacobini ET, Garaguso I, Grifantini R, Gauli G, Grandi G (2001) Combined automated PCR cloning, in vitro transcription/translation and two-dimensional electrophoresis for bacterial proteome analysis. Proteomics 1(11):1378–1389

    Article  PubMed  CAS  Google Scholar 

  • Pajak L, Zhang R, Pittman C, Roby K, Boyer S (2004) Automated genomic and proteomic applications on the Biomek® NX laboratory automation workstation. J Assoc Lab Autom 9:177–184

    Article  CAS  Google Scholar 

  • Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215

    Article  PubMed  CAS  Google Scholar 

  • Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Lidén G (2007) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99(4):783–790

    Article  Google Scholar 

  • Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW, Broughton WJ, Deakin WJ (2005) NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J Bacteriol 187(3):1173–1181

    Article  PubMed  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  PubMed  CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21(3):816–822

    Article  PubMed  CAS  Google Scholar 

  • Salis A, Bhattacharyya MS, Monduzzi M, Solinas V (2009) Role of the support surface on the loading and the activity of Pseudomonas fluorescens lipase used for biodiesel synthesis. J Mol Catal B Enzym 57:262–269

    Article  CAS  Google Scholar 

  • Sebastian P, Wallwitz J, Schmidt S (2003) Semi automated production of a set of different recombinant GST-streptag fusion proteins. J Chromatogr B Anal Technol Biomed Life Sci 786(1–2):343–355

    Article  CAS  Google Scholar 

  • Sedlak M, Ho NWY (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 114(1–3):403–416

    Article  Google Scholar 

  • Shaw AC, Gevaert K, Demol H, Hoorelbeke B, Vandekerckhove J, Larsen MR, Roepstorff P, Holm A, Christiansen G, Birkelund S (2002) Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2(2):164–186

    Article  PubMed  CAS  Google Scholar 

  • Sheng W, Liao X (2002) Solution structure of a yeast ubiquitin-like protein Smt3: the role of structurally less defined sequences in protein-protein recognitions. Protein Sci 11:1482–1491

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki-Kitakawa N, Honda H, Kuribayashi H, Toda T, Fukumura T, Yonemoto T (2007) Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresour Technol 98(2):416–421

    Article  PubMed  CAS  Google Scholar 

  • Sterner DE, Grant PA, Roberts SM, Duggan LJ, Belotserkovskaya R, Pacella LA, Winston F, Workman JL, Berger SL (1999) Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 19(1):86–98

    PubMed  CAS  Google Scholar 

  • Torres R, Mateo C, Fernández-Lorente G, Ortiz C, Fuentes M, Palomo JM, Guisán JM, Fernández-Lafuente R (2003) A novel heterofunctional epoxy-amino Sepabeads for a new enzyme immobilization protocol: immobilization-stabilization of beta-galactosidase from Aspergillus oryzae. Biotechnol Prog 19(3):1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Trabbic-Carlson K, Liu L, Kim B, Chilkoti A (2004) Expression and purification of recombinant proteins from Escherichia coli: comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. Protein Sci 13(12):3274–3284

    Article  PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  • Van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90(4):391–418

    Article  PubMed  CAS  Google Scholar 

  • Van Maris AJA, Winkler AA, Kuyper M, de Laat WTAM, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204

    PubMed  Google Scholar 

  • Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B Enzym 9(4–6):113–148

    Article  CAS  Google Scholar 

  • Wang W, Malcolm BA (1999) Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26(4):680–682

    PubMed  CAS  Google Scholar 

  • Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJA (2007) Engineering of saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73(15):4881–4891

    Google Scholar 

  • Yan L, Adams ME (1998) Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J Biol Chem 273(4):2059–2066

    Article  PubMed  CAS  Google Scholar 

  • Zuo D, Mohr SE, Hu Y, Taycher E, Rolfs A, Kramer J, Williamson J, LaBaer J (2007) PlasmID: a centralized repository for plasmid clone information and distribution. Nucleic Acids Res 35(Database issue):D680–D684

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hughes, S.R., Butt, T.R., Bartolett, S., Riedmuller, S.B. (2012). Automated Systems of Plasmid-Based Functional Proteomics to Improve Microbes for Biofuel Production. In: Liu, Z. (eds) Microbial Stress Tolerance for Biofuels. Microbiology Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21467-7_11

Download citation

Publish with us

Policies and ethics