Skip to main content

Metabolomics for Ethanologenic Yeast

  • Chapter
  • First Online:
Microbial Stress Tolerance for Biofuels

Part of the book series: Microbiology Monographs ((MICROMONO,volume 22))

Abstract

Metabolomics-based studies have been applied widely to improve our understanding of molecular mechanisms of yeast stress response as well as to seek foundational basis for further optimization of fermentation processes. In this chapter, the basic principles of metabolomic approaches including sample preparation, metabolomic analysis, metabolite identification and quantification, data mining, and biological interpretation are summarized, emphasizing on the gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled to mass spectrometry (LC-MS) based strategies. The major applications of metabolomics on ethanologenic yeast during ethanol production are highlighted, such as stress response to high cell density, inhibitory compounds in the lignocellulosic hydrolysates, different (batch and continuous) fermentation modes, and vacuum fermentation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics via metabolic footprinting. Nat Biotechnol 21:692–696

    Article  PubMed  CAS  Google Scholar 

  • Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW, Feibelman TP, Mayorga ME, Maxon ME, Sykes K, Tobin JV, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  PubMed  CAS  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    Article  PubMed  CAS  Google Scholar 

  • Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8:1439–1444

    Article  PubMed  CAS  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang P, Karp PD (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:511–516

    Article  Google Scholar 

  • Cheng JS, Ding MZ, Tian HC, Yuan YJ (2009a) Inoculation density-dependent responses and pathway shifts in Saccharomyces cerevisiae. Proteomics 9:4704–4713

    Article  PubMed  CAS  Google Scholar 

  • Cheng JS, Zhou X, Ding MZ, Yuan YJ (2009b) Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Appl Microbiol Biotechnol 83:909–923

    Article  PubMed  CAS  Google Scholar 

  • Corte L, Rellini P, Roscini L, Fatichenti F, Cardinali G (2010) Development of a novel, FTIR (Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress response study. Anal Chim Acta 659:258–265

    Article  PubMed  CAS  Google Scholar 

  • Cowart LA, Shotwell M, Worley ML, Richards AJ, Montefusco DJ, Hannun YA, Lu X (2010) Revealing a signaling role of phytosphingosine-1-phosphate in yeast. Mol Syst Biol 6:349

    Article  PubMed  Google Scholar 

  • Cysewski GR, Wilke CR (1977) Rapid ethanol fermentations using vacuum and cell cycle. Biotechnol Bioeng 19:1125–1143

    Article  CAS  Google Scholar 

  • Davis RA, Charlton AJ, Godward J, Jones SA, Harrison M, Wilson JC (2007) Adaptive binning: an improved binning method for metabolomics data using the undecimated wavelet transform. Chemom Intell Lab Syst 85:144–154

    Article  CAS  Google Scholar 

  • de Koning W, van Dam K (1992) A method for the determinations of changes of glycolytic metabolites in yeast on a sub second time scale using extraction at neutral pH. Anal Biochem 204:118–123

    Article  PubMed  Google Scholar 

  • Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson L (2005) Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol Bioeng 90:703–714

    Article  PubMed  CAS  Google Scholar 

  • Ding MZ, Tian HC, Cheng JS, Yuan YJ (2009a) Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. J Biotechnol 144:279–286

    Article  PubMed  CAS  Google Scholar 

  • Ding MZ, Cheng JS, Xiao WH, Qiao B, Yuan YJ (2009b) Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF/MS. Metabolomics 5:229–238

    Article  CAS  Google Scholar 

  • Ding MZ, Zhou X, Yuan YJ (2010a) Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations. Metabolomics 6:42–55

    Article  CAS  Google Scholar 

  • Ding MZ, Li BZ, Cheng JS, Yuan YJ (2010b) Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS 14:553–561

    Article  PubMed  CAS  Google Scholar 

  • Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics. doi:10.1007/s11306-011-0303-6

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  PubMed  CAS  Google Scholar 

  • Fonseca ES, Guido RC, Scalassara PR, Maciel CD, Pereira JC (2007) Wavelet time-frequency analysis and least squares support vector machines for the identification of voice disorders. Comput Biol Med 37:571–578

    Article  PubMed  Google Scholar 

  • Garcia DE, Baidoo EE, Benke PI, Pingitore F, Tang YJ, Villa S, Keasling JD (2008) Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol 11:233–239

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  PubMed  CAS  Google Scholar 

  • Gaspar ML, Aregullin MA, Jesch SA, Nunez LR, Villa-Garcia M, Henry SA (2007) The emergence of yeast lipidomics. Biochim Biophys Acta 1771:241–254

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252

    Article  PubMed  CAS  Google Scholar 

  • Hajjaj H, Blanc PJ, Goma G, Francois J (1998) Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. FEMS Microbiol Lett 164:195–200

    Article  CAS  Google Scholar 

  • Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    Article  PubMed  CAS  Google Scholar 

  • Han PP, Yuan YJ (2009) Lipidomic analysis reveals activation of phospholipid signaling in mechanotransduction of Taxus cuspidata cells in response to shear stress. FASEB J 23:623–630

    Article  PubMed  CAS  Google Scholar 

  • Hans MA, Heinzle E, Wittmann C (2001) Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56:776–779

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  • Ingram LO, Buttke TM (1984) Effects of alcohols on microorganisms. Adv Microb Physiol 25:253–300

    Article  PubMed  CAS  Google Scholar 

  • Ivanova PT, Cerda BA, Horn DM, Cohen JS, McLafferty FW, Brown HA (2001) Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2 H3 mastocytoma cells during degranulation. Proc Natl Acad Sci USA 98:7152–7157

    Article  PubMed  CAS  Google Scholar 

  • Jansen JJ, Hoefsloot HCJ, Boelens HFM, van der Greef J, Smilde AK (2004) Analysis of longitudinal metabolomics data. Bioinformatics 20:2438–2446

    Article  PubMed  CAS  Google Scholar 

  • Kawai S, Phan TA, Kono E, Harada K, Okai C, Fukusaki E, Murata K (2009) Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation. J Basic Microbiol 49:73–81

    Article  PubMed  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Lafaye A, Junot C, Pereira Y, Lagniel G, Tabet JC, Ezan E, Labarre J (2005) Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism. J Biol Chem 280:24723–24730

    Article  PubMed  CAS  Google Scholar 

  • Lei J, Zhao X, Ge X, Bai F (2007) Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. J Biotechnol 131:270–275

    Article  PubMed  CAS  Google Scholar 

  • Li BZ, Yuan YJ (2010c) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86:1915–1924

    Article  PubMed  CAS  Google Scholar 

  • Li BZ, Cheng JS, Qiao B, Yuan YJ (2010a) Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J Ind Microbiol Biotechnol 37:43–55

    Article  PubMed  Google Scholar 

  • Li BZ, Cheng JS, Ding MZ, Yuan YJ (2010b) Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol 148:194–203

    Article  PubMed  CAS  Google Scholar 

  • Lin FM, Tang Y, Yuan YJ (2009) Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics 9:5471–5483

    Article  PubMed  CAS  Google Scholar 

  • Lindon JC, Holmes E, Nicholson JK (2001) Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc 39:1–40

    Article  CAS  Google Scholar 

  • Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors and in situ detoxification. In: Vertes A, Qureshi N, Yukawa H, Blaschek H (eds) Biomass to biofuels: strategies for global industries. Wiley, West Sussex, pp 233–258

    Chapter  Google Scholar 

  • Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154

    Article  PubMed  Google Scholar 

  • Maiorella B, Blanch HW, Wilke CR (1983) By-product inhibition effects of ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 25:103–121

    Article  PubMed  CAS  Google Scholar 

  • Mannazzu I, Angelozzi D, Budroni M, Farris GA, Gofffini P, Lodi T, Marzona M, Bardi L, Belviso S (2008) Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: Cell lipid composition, membrane integrity, viability and fermentative activity. Int J Food Microbiol 121:84–91

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KF, Smedsgaard J, Larsen TO, Lund F, Thrane U, Frisvad JC (2003) Chemical identification of fungi: metabolite profiling and metabolomics. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, New York, pp 19–35

    Google Scholar 

  • Niessen WMA (1998) Advances in instrumentation in liquid chromatography mass spectrometry and related liquid-introduction techniques. J Chromatogr A 794:407–435

    Article  PubMed  CAS  Google Scholar 

  • Paley SM, Karp PD (2006) The pathway tools cellular overview diagram and omics viewer. Nucleic Acids Res 34:3771–3778

    Article  PubMed  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26:404–412

    Article  PubMed  CAS  Google Scholar 

  • Pittner S, Kamarthi SV (1999) Feature extraction from wavelet coefficients for pattern recognition tasks. IEEE Trans Pattern Anal 21:83–88

    Article  Google Scholar 

  • Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) UPLIC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 20:1989–1994

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ, Evans RI, ter Steeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28:255–261

    Article  PubMed  CAS  Google Scholar 

  • Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20:2447–2454

    Article  PubMed  CAS  Google Scholar 

  • Sen R, Swaminathan T (2004) Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochem Eng J 21:141–148

    Article  CAS  Google Scholar 

  • Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Fujikawa M, Nagai T (1999) Artificial neural network as a novel method to optimize pharmaceutical formulations. Pharm Res 16:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Higashi T, Rakwal R, Wakida S, Iwahashi H (2007) Quantitative analysis of sulfur-related metabolites during cadmium stress response in yeast by capillary electrophoresis-mass spectrometry. J Pharm Biomed Anal 44:608–613

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Mejanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitas A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:53–61

    Article  PubMed  CAS  Google Scholar 

  • Tweeddale H, Notley-Mcrobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116

    PubMed  CAS  Google Scholar 

  • Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993

    Article  PubMed  CAS  Google Scholar 

  • Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    Google Scholar 

  • Van Hoek P, de Hulster E, Van Dijken JP, Pronk JT (2000) Fermentative capacity in high-cell-density fed-batch cultures of baker’s yeast. Biotechnol Bioeng 68:517–523

    Article  PubMed  Google Scholar 

  • Van Mispelaar VG, Tas AC, Smilde AK, Schoenmakers PJ, van Asten AC (2003) Quantitative analysis of target components by comprehensive two-dimensional gas chromatography. J Chromatogr A 1019:15–29

    Article  PubMed  Google Scholar 

  • Villas-Bôas SG, Hojer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169

    Article  PubMed  Google Scholar 

  • Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of H-1 NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62:949–957

    Article  PubMed  CAS  Google Scholar 

  • Weeks ME, Sinclair J, Butt A, Chung YL, Worthington JL, Wilkinson CR, Griffiths J, Jones N, Waterfield MD, Timms JF (2006) A parallel proteomic and metabolomic analysis of the hydrogen peroxide- and Sty1p-dependent stress response in Schizosaccharomyces pombe. Proteomics 6:2772–2796

    Article  PubMed  CAS  Google Scholar 

  • Wittmann C, Krömer JO, Kiefer P, Binz T, Heinzle E (2004) Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 327:135–139

    Article  PubMed  CAS  Google Scholar 

  • Wolf C, Quinn PJ (2008) Lipidomics: practical aspects and applications. Prog Lipid Res 47:15–36

    Article  PubMed  CAS  Google Scholar 

  • Xia JM, Yuan YJ (2009) Comparative lipidomics of four strains of Saccharomyces cerevisiae reveals different responses to furfural, phenol, and acetic acid. J Agr Food Chem 57:99–108

    Article  CAS  Google Scholar 

  • Xia JM, Wu XJ, Yuan YJ (2007) Integration of wavelet transform with PCA and ANN for metabolomics data-mining. Metabolomics 3:531–537

    Article  CAS  Google Scholar 

  • Xia JM, Jones AD, Lau MW, Yuan YJ, Dale BE, Balan V (2010) Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity. Biotechnol Bioeng 108:12–21

    Article  Google Scholar 

  • Yang S, Qiao B, Lu SH, Yuan YJ (2007) Comparative lipidomics analysis of cellular development and apoptosis in two Taxus cell lines. Biochim Biophys Acta 1771:600–612

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156:287–301

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Zhou J, Tian HC, Yuan YJ (2010) Dynamic lipidomic insights into the adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. OMICS 14:563–574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Basic Research Program of China (“973” Program: 2007CB714301, 2011CBA00802), and the National Natural Science Foundation of China (Key Program: 20736006, Major International Joint Research Project: 21020102040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jin Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yuan, YJ., Ding, MZ., Xia, JM., Cheng, JS. (2012). Metabolomics for Ethanologenic Yeast. In: Liu, Z. (eds) Microbial Stress Tolerance for Biofuels. Microbiology Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21467-7_10

Download citation

Publish with us

Policies and ethics