Skip to main content

Adaptable Processes (Extended Abstract)

  • Conference paper
Formal Techniques for Distributed Systems (FMOODS 2011, FORTE 2011)

Abstract

We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime. This allows to express a wide range of evolvability patterns for processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that at most k consecutive errors will arise in future states, the latter ensures that if the system enters into an error state then it will eventually reach a correct state. We study the (un)decidability of these two problems in different fragments of the calculus. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities.

Supported by the French project ANR-2010-SEGI-013 - Aeolus, the EU integrated project HATS, the Fondation de Coopération Scientifique Digiteo Triangle de la Physique, and FCT / MCTES - Carnegie Mellon Portugal Program, grant NGN-44-2009-12 - Interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Acciai, L., Boreale, M.: Deciding safety properties in infinite-state pi-calculus via behavioural types. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 31–42. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Baeten, J., Bergstra, J.: Mode transfer in process algebra. Technical Report Report 00/01, Eindhoven University of Technology (2000)

    Google Scholar 

  4. Berger, M., Honda, K.: The two-phase commitment protocol in an extended pi-calculus. Electr. Notes Theor. Comput. Sci. 39(1) (2000)

    Google Scholar 

  5. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Adaptable processes. Technical report, Univ. of Bologna, (2011), Draft, http://www.cs.unibo.it/~perez/ap/

  6. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Steps on the Road to Component Evolvability. Post-proceedings of FACS 2010. LNCS. Springer, Heidelberg (to appear, 2011)

    Google Scholar 

  7. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and compensation. Math. Struct. in Comp. Sci. 19(3), 565–599 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bundgaard, M., Godskesen, J.C., Hildebrandt, T.: Bisimulation congruences for homer — a calculus of higher order mobile embedded resources. Technical Report TR-2004-52, IT University of Copenhagen (2004)

    Google Scholar 

  9. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, replication and iteration in process calculi. Math. Struct. in Comp. Sci. 19(6), 1191–1222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 313–327. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Esparza, J.: Some applications of petri nets to the analysis of parameterised systems. Talk at WISP 2003 (2003)

    Google Scholar 

  12. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: Proc. of LICS, pp. 352–359 (1999)

    Google Scholar 

  13. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Francalanza, A., Hennessy, M.: A fault tolerance bisimulation proof for consensus (Extended abstract). In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 395–410. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Transactions of the American Mathematical Society 95(2), 210–225 (1960)

    MATH  MathSciNet  Google Scholar 

  16. Milner, R.: Comunication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  17. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  18. Nestmann, U., Fuzzati, R., Merro, M.: Modeling consensus in a process calculus. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 399–414. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Pérez, J.A.: Higher-Order Concurrency: Expressiveness and Decidability Results. PhD thesis, University of Bologna (2010), Draft, http://www.japerez.phipages.com

  20. Riely, J., Hennessy, M.: Distributed processes and location failures. Theor. Comput. Sci. 266(1-2), 693–735 (2001); An extended abstract appeared in Proc. of ICALP 1997

    Article  MATH  MathSciNet  Google Scholar 

  21. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci. (1992)

    Google Scholar 

  22. Schmitt, A., Stefani, J.-B.: The kell calculus: A family of higher-order distributed process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 146–178. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded processes. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G. (2011). Adaptable Processes (Extended Abstract). In: Bruni, R., Dingel, J. (eds) Formal Techniques for Distributed Systems. FMOODS FORTE 2011 2011. Lecture Notes in Computer Science, vol 6722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21461-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21461-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21460-8

  • Online ISBN: 978-3-642-21461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics