Skip to main content

Approximation Algorithms for Orienting Mixed Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6661))

Abstract

Graph orientation is a fundamental problem in graph theory that has recently arisen in the study of signaling-regulatory pathways in protein networks. Given a graph and a list of ordered source-target vertex pairs, it calls for assigning directions to the edges of the graph so as to maximize the number of pairs that admit a directed source-to-target path. When the input graph is undirected, a sub-logarithmic approximation is known for the problem. However, the approximability of the biologically-relevant variant, in which the input graph has both directed and undirected edges, was left open. Here we give the first approximation algorithm to this problem. Our algorithm provides a sub-linear guarantee in the general case, and logarithmic guarantees for structured instances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, E.M., Hassin, R.: A note on orientations of mixed graphs. Discrete Applied Mathematics 116(3), 271–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics 12(3), 289–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  4. Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)

    Article  Google Scholar 

  5. Boesch, F., Tindell, R.: Robbins’s theorem for mixed multigraphs. The American Mathematical Monthly 87(9), 716–719 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. Journal of Computer and System Sciences 74(7), 1188–1198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations of mixed multigraphs. Networks 15(4), 477–484 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, R., Havlin, S., ben-Avraham, D.: Structural properties of scale-free networks. In: Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  9. Dorn, B., Hüffner, F., Krüger, D., Niedermeier, R., Uhlmann, J.: Exploiting bounded signal flow for graph orientation based on cause–effect pairs (To appear). In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 104–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Fields, S.: High-throughput two-hybrid analysis. The promise and the peril. The FEB Journal 272(21), 5391–5399 (2005)

    Article  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  12. Frederickson, G.N., Johnson, D.B.: Generating and searching sets induced by networks. In: ICALP 1980. LNCS, vol. 85, pp. 221–233. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  13. Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Gavin, A., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., Remor, M., Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.-A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

    Article  Google Scholar 

  15. Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reachability. Information Processing Letters 63(5), 229–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  18. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orienting graphs based on cause-effect pairs and its applications to orienting protein networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 222–232. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. The American Mathematical Monthly 46(5), 281–283 (1939)

    Article  MATH  Google Scholar 

  21. Silverbush, D., Elberfeld, M., Sharan, R.: Optimally orienting physical networks. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 424–436. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Tarjan, R.E.: A note on finding the bridges of a graph. Information Processing Letters 2(6), 160–161 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yeang, C., Ideker, T., Jaakkola, T.: Physical network models. Journal of Computational Biology 11(2-3), 243–262 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elberfeld, M., Segev, D., Davidson, C.R., Silverbush, D., Sharan, R. (2011). Approximation Algorithms for Orienting Mixed Graphs. In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21458-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21458-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21457-8

  • Online ISBN: 978-3-642-21458-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics