Practical Applications of the Theory

  • Yuri B. ZudinEmail author
Part of the Mathematical Engineering book series (MATHENGIN, volume 5)


In order to illustrate the influence of thermophysical properties of a solid body on the experimental heat transfer coefficient (EHTC) under conditions where heat transfer intensity is subjected to periodic oscillations, a special model experiment has been designed and carried out. Its purpose was to determine a dependence of the function \(\epsilon (\langle \tilde{h}\rangle )\) for a semi-infinite body under conditions of a time-dependent problem. This dependence has been theoretically computed in (3.56) and shown in Fig. 3.10. The basic element of the experimental rig (Fig. 7.1) was a long brass electrically heated rod (1) thermally insulated on its lateral cylindrical surface, with the end face being periodically washed with a colder water jet from the nozzles (2) of various diameters.


Heat Transfer Liquid Film Vapor Bubble Biot Number Heat Transfer Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.B. Mikic, On mechanism on dropwise condensation. Int. J. Heat Mass Transfer 12, 1311–1323 (1969)CrossRefGoogle Scholar
  2. 2.
    P. Griffith, M.S. Lee, The effect of surface thermal properties and finish on dropwise condensation. Int. J. Heat Mass Transfer 10, 697–707 (1967)CrossRefGoogle Scholar
  3. 3.
    D. Wilkins L. Bromley, Dropwise condensation phenomena. AIChE J. 19 839–845 (1973)Google Scholar
  4. 4.
    R.J. Hannemann, B.B. Mikic, An analysis of the effect of surface thermal conductivity on the rate of heat transfer in dropwise condensation. Int. J. Heat Mass Transfer 19, 1299–1307 (1976)CrossRefGoogle Scholar
  5. 5.
    R.J. Hannemann, B.B. Mikic, An experimental investigation into the effect of surface thermal conductivity on the rate of heat transfer in dropwise condensation. Int. J. Heat Mass Transfer 19, 1309–1317 (1976)CrossRefGoogle Scholar
  6. 6.
    R.J. Hannemann, Condensing surface thickness effects in dropwise condensation. Int. J. Heat Mass Transfer 21, 65–66 (1978)CrossRefGoogle Scholar
  7. 7.
    J.W. Rose, Further aspects of dropwise condensation theory. Int. J. Heat Mass Transfer 10, 697–707 (1967)CrossRefGoogle Scholar
  8. 8.
    J.W. Rose, Dropwise condensation theory and experiment: a review.Proc. Inst. Mech. Eng. A J. Power Ener. 2, 115–128 (2002)CrossRefGoogle Scholar
  9. 9.
    J.W. Rose, Heat-transfer coefficients, Wilson plots and accuracy of thermal measurements. Exp Therm Fluid Sci 28 3–12 (2003)Google Scholar
  10. 10.
    K. Stephan, Heat Transfer in Condensation and Boiling (Springer, Berlin, 1992)Google Scholar
  11. 11.
    D.A. Labuntsov, Physical Principles of Energetics. Selected Papers (Power Engineering Institute, Moscow, 2000) (in Russian)Google Scholar
  12. 12.
    H. Schlichting, K. Gersten, Grenzschicht-Theorie (Springer, Berlin, 1997)zbMATHGoogle Scholar
  13. 13.
    I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface Int. J. Heat Mass Transfer 47, 5033–5044 (2004)zbMATHGoogle Scholar
  14. 14.
    D. Kenning, I. Golobi, H. Xing, M. Baselj, V. Lojk, J. von Hardenberg, Mechanistic models for pool nucleate boiling heat transfer: input and validation. Int. J. Heat Mass Transfer 42, 511–527 (2006)CrossRefGoogle Scholar
  15. 15.
    V.K. Dhir, Mechanistic prediction of nucleate boiling heat transfer–achievable or a hopeless task? ASME J. Heat Transfer 123, 1–12 (2006)CrossRefGoogle Scholar
  16. 16.
    V.K. Dhir, Numerical simulations of pool-boiling heat transfer. AIChE J. 47, 813–834 (2001)CrossRefGoogle Scholar
  17. 17.
    B. Yu, P. Cheng, A fractal model for nucleate pool boiling heat transfer. ASME J. Heat Transfer 124, 1117–1124 (2002)CrossRefGoogle Scholar
  18. 18.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman New York, 1982)Google Scholar
  19. 19.
    R.A. Eanshaw (ed.), Application of Fractals and Chaos (Springer, Berlin, 1993)Google Scholar
  20. 20.
    T. Cebeci, Turbulence Models and Their Application (Springer, Berlin, 2003)Google Scholar
  21. 21.
    K. Stephan Mechanismus und modellgesetz des wärmeübergangs bei der blasenverdampfung. Chem. Ing. Tech. 35(11) 775–784 (1963)CrossRefGoogle Scholar
  22. 22.
    D. Gorenflo, Behältersieden (Sieden bei freier Konvektion). VDI – Wärmeatlas, Hab (Springer, Berlin, 2002)Google Scholar
  23. 23.
    Y. Qi, J.F. Klausner, Comparison of nucleation site density for pool boiling and gas nucleation. ASME J. Heat Transfer 128, 13–20 (2006)CrossRefGoogle Scholar
  24. 24.
    R.J. Benjamin, A.R. Balakrishnan, Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Exp. Thermal Fluid Sci 15, 32–42 (1997)CrossRefGoogle Scholar
  25. 25.
    F.S. Sherman, Viscous Flow (McGraw-Hill, New York, 1990)zbMATHGoogle Scholar
  26. 26.
    J.W. Rose, Surface tension effects and enhancement of condensation heat transfer. Trans IChemE A Chem. Eng. Res. Design 82, 419–429 (2004)CrossRefGoogle Scholar
  27. 27.
    P.C. Wayner, Y.K. Kao, L.V. LaCroix, The interline heat transfer coefficient on an evaporating wetting film. Int. J. Heat Mass Transfer 19, 487–492 (1976)CrossRefGoogle Scholar
  28. 28.
    J. Straub, Boiling heat transfer and bubble dynamics in microgravity. Adv. Heat Transfer 35, 57–172 (2001)CrossRefGoogle Scholar
  29. 29.
    A.C. Dudkevich, F.D. Akhmedov, Experimental study of influence of thermophysical properties of heating surface on boiling of nitrogen at elevated pressures. Works Moscow Power Eng Instit. 198, 41–47 (1974) (in Russian)Google Scholar
  30. 30.
    Y.A. Kirichenko, K.V. Rusanov, E.G. Tyurina, Effect of pressure on heat exchange in nitrogen boiling under conditions of free motion in an annular channel. J. Eng. Phys. Thermophys. 49, 1005–1010 (1985)Google Scholar
  31. 31.
    A.K. Gorodov, O.N. Kabankov, Y.K. Martynov, V.V. Yagov, Effect of material and of the thickness of the heating surface on the heat transfer rate in boiling of water and ethanol at subatmospheric pressures. J. Heat Transfer Sov. Res. 11(3), 44–52 (1979)Google Scholar
  32. 32.
    Y.B. Zudin, Analog of the Rayleigh equation for the problem of bubble dynamics in a tube. J. Eng. Phys. Thermophys. 63, 672–675 (1992)CrossRefGoogle Scholar
  33. 33.
    Y.B. Zudin, The calculation of parameters of the evaporating meniscus a thin liquid film. High Temp. 31, 714–716 (1993)Google Scholar
  34. 34.
    Y.B. Zudin, The use of the model of evaporating macrolayer for determining the characteristics of nucleate boiling High Temp. 35, 565–571 (1997)Google Scholar
  35. 35.
    Y.B. Zudin, Calculation of critical thermal loads under extreme intensities of mass forces. Heat Transfer Res. 28, 481–483 (1997)Google Scholar
  36. 36.
    Y.B. Zudin, Influence of the coefficient of thermal activity of a wall on heat transfer in transient boiling. J. Eng. Phys. Thermophys. 71, 696–698 (1997)CrossRefGoogle Scholar
  37. 37.
    Y.B. Zudin, Law of vapor-bubble growth in a tube in the region of low pressures. J. Eng. Phys. Thermophys. 70, 714–717 (1997)CrossRefGoogle Scholar
  38. 38.
    Y.B. Zudin, The distance between nucleate boiling sites. High Temp. 36, 662–663 (1998)Google Scholar
  39. 39.
    Y.B. Zudin, Calculation of the surface density of nucleation sites in nucleate boiling of a liquid. J. Eng. Phys. Thermophys. 71, 178–183 (1998)CrossRefGoogle Scholar
  40. 40.
    Y.B. Zudin, Boiling of liquid in the cell of a jet printer. J. Eng. Phys. Thermophys. 71, 217–220 (1998)CrossRefGoogle Scholar
  41. 41.
    Y.B. Zudin, Burn-out of a liquid under conditions of natural convection. J. Eng. Phys. Thermophys. 72, 50–53 (1999)CrossRefGoogle Scholar
  42. 42.
    Y.B. Zudin, Wall non-isothermicity effect on the heat exchange in jet reflux. J. Eng. Phys. Thermophys. 72, 309–312 (1999)CrossRefGoogle Scholar
  43. 43.
    Y.B. Zudin, Model of heat transfer in bubble boiling. J. Eng. Phys. Thermophys. 72, 438–444 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Russian State Atomic Energy Corporation Russian Nuclear-Power Machine BuildingResearch InstituteMoskvaRussia

Personalised recommendations