Skip to main content

Practical Applications of the Theory

  • Chapter
  • First Online:
  • 1001 Accesses

Part of the book series: Mathematical Engineering ((MATHENGIN,volume 5))

Abstract

In order to illustrate the influence of thermophysical properties of a solid body on the experimental heat transfer coefficient (EHTC) under conditions where heat transfer intensity is subjected to periodic oscillations, a special model experiment has been designed and carried out. Its purpose was to determine a dependence of the function \(\epsilon (\langle \tilde{h}\rangle )\) for a semi-infinite body under conditions of a time-dependent problem. This dependence has been theoretically computed in (3.56) and shown in Fig. 3.10. The basic element of the experimental rig (Fig. 7.1) was a long brass electrically heated rod (1) thermally insulated on its lateral cylindrical surface, with the end face being periodically washed with a colder water jet from the nozzles (2) of various diameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Apparently, for the first time the specified problem with the reference to a problem of liquid film evaporation was theoretically and experimentally investigated by the authors of the work [27]. Later the model of an evaporating liquid film was used by Straub at a research of a problem of vapor bubble dynamics on a solid wall at boiling of a liquid (see survey work [28]).

References

  1. B.B. Mikic, On mechanism on dropwise condensation. Int. J. Heat Mass Transfer 12, 1311–1323 (1969)

    Article  Google Scholar 

  2. P. Griffith, M.S. Lee, The effect of surface thermal properties and finish on dropwise condensation. Int. J. Heat Mass Transfer 10, 697–707 (1967)

    Article  Google Scholar 

  3. D. Wilkins L. Bromley, Dropwise condensation phenomena. AIChE J. 19 839–845 (1973)

    Google Scholar 

  4. R.J. Hannemann, B.B. Mikic, An analysis of the effect of surface thermal conductivity on the rate of heat transfer in dropwise condensation. Int. J. Heat Mass Transfer 19, 1299–1307 (1976)

    Article  Google Scholar 

  5. R.J. Hannemann, B.B. Mikic, An experimental investigation into the effect of surface thermal conductivity on the rate of heat transfer in dropwise condensation. Int. J. Heat Mass Transfer 19, 1309–1317 (1976)

    Article  Google Scholar 

  6. R.J. Hannemann, Condensing surface thickness effects in dropwise condensation. Int. J. Heat Mass Transfer 21, 65–66 (1978)

    Article  Google Scholar 

  7. J.W. Rose, Further aspects of dropwise condensation theory. Int. J. Heat Mass Transfer 10, 697–707 (1967)

    Article  Google Scholar 

  8. J.W. Rose, Dropwise condensation theory and experiment: a review.Proc. Inst. Mech. Eng. A J. Power Ener. 2, 115–128 (2002)

    Article  Google Scholar 

  9. J.W. Rose, Heat-transfer coefficients, Wilson plots and accuracy of thermal measurements. Exp Therm Fluid Sci 28 3–12 (2003)

    Google Scholar 

  10. K. Stephan, Heat Transfer in Condensation and Boiling (Springer, Berlin, 1992)

    Google Scholar 

  11. D.A. Labuntsov, Physical Principles of Energetics. Selected Papers (Power Engineering Institute, Moscow, 2000) (in Russian)

    Google Scholar 

  12. H. Schlichting, K. Gersten, Grenzschicht-Theorie (Springer, Berlin, 1997)

    MATH  Google Scholar 

  13. I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface Int. J. Heat Mass Transfer 47, 5033–5044 (2004)

    MATH  Google Scholar 

  14. D. Kenning, I. Golobi, H. Xing, M. Baselj, V. Lojk, J. von Hardenberg, Mechanistic models for pool nucleate boiling heat transfer: input and validation. Int. J. Heat Mass Transfer 42, 511–527 (2006)

    Article  Google Scholar 

  15. V.K. Dhir, Mechanistic prediction of nucleate boiling heat transfer–achievable or a hopeless task? ASME J. Heat Transfer 123, 1–12 (2006)

    Article  Google Scholar 

  16. V.K. Dhir, Numerical simulations of pool-boiling heat transfer. AIChE J. 47, 813–834 (2001)

    Article  Google Scholar 

  17. B. Yu, P. Cheng, A fractal model for nucleate pool boiling heat transfer. ASME J. Heat Transfer 124, 1117–1124 (2002)

    Article  Google Scholar 

  18. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman New York, 1982)

    Google Scholar 

  19. R.A. Eanshaw (ed.), Application of Fractals and Chaos (Springer, Berlin, 1993)

    Google Scholar 

  20. T. Cebeci, Turbulence Models and Their Application (Springer, Berlin, 2003)

    Google Scholar 

  21. K. Stephan Mechanismus und modellgesetz des wärmeübergangs bei der blasenverdampfung. Chem. Ing. Tech. 35(11) 775–784 (1963)

    Article  Google Scholar 

  22. D. Gorenflo, Behältersieden (Sieden bei freier Konvektion). VDI – Wärmeatlas, Hab (Springer, Berlin, 2002)

    Google Scholar 

  23. Y. Qi, J.F. Klausner, Comparison of nucleation site density for pool boiling and gas nucleation. ASME J. Heat Transfer 128, 13–20 (2006)

    Article  Google Scholar 

  24. R.J. Benjamin, A.R. Balakrishnan, Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Exp. Thermal Fluid Sci 15, 32–42 (1997)

    Article  Google Scholar 

  25. F.S. Sherman, Viscous Flow (McGraw-Hill, New York, 1990)

    MATH  Google Scholar 

  26. J.W. Rose, Surface tension effects and enhancement of condensation heat transfer. Trans IChemE A Chem. Eng. Res. Design 82, 419–429 (2004)

    Article  Google Scholar 

  27. P.C. Wayner, Y.K. Kao, L.V. LaCroix, The interline heat transfer coefficient on an evaporating wetting film. Int. J. Heat Mass Transfer 19, 487–492 (1976)

    Article  Google Scholar 

  28. J. Straub, Boiling heat transfer and bubble dynamics in microgravity. Adv. Heat Transfer 35, 57–172 (2001)

    Article  Google Scholar 

  29. A.C. Dudkevich, F.D. Akhmedov, Experimental study of influence of thermophysical properties of heating surface on boiling of nitrogen at elevated pressures. Works Moscow Power Eng Instit. 198, 41–47 (1974) (in Russian)

    Google Scholar 

  30. Y.A. Kirichenko, K.V. Rusanov, E.G. Tyurina, Effect of pressure on heat exchange in nitrogen boiling under conditions of free motion in an annular channel. J. Eng. Phys. Thermophys. 49, 1005–1010 (1985)

    Google Scholar 

  31. A.K. Gorodov, O.N. Kabankov, Y.K. Martynov, V.V. Yagov, Effect of material and of the thickness of the heating surface on the heat transfer rate in boiling of water and ethanol at subatmospheric pressures. J. Heat Transfer Sov. Res. 11(3), 44–52 (1979)

    Google Scholar 

  32. Y.B. Zudin, Analog of the Rayleigh equation for the problem of bubble dynamics in a tube. J. Eng. Phys. Thermophys. 63, 672–675 (1992)

    Article  Google Scholar 

  33. Y.B. Zudin, The calculation of parameters of the evaporating meniscus a thin liquid film. High Temp. 31, 714–716 (1993)

    Google Scholar 

  34. Y.B. Zudin, The use of the model of evaporating macrolayer for determining the characteristics of nucleate boiling High Temp. 35, 565–571 (1997)

    Google Scholar 

  35. Y.B. Zudin, Calculation of critical thermal loads under extreme intensities of mass forces. Heat Transfer Res. 28, 481–483 (1997)

    Google Scholar 

  36. Y.B. Zudin, Influence of the coefficient of thermal activity of a wall on heat transfer in transient boiling. J. Eng. Phys. Thermophys. 71, 696–698 (1997)

    Article  Google Scholar 

  37. Y.B. Zudin, Law of vapor-bubble growth in a tube in the region of low pressures. J. Eng. Phys. Thermophys. 70, 714–717 (1997)

    Article  Google Scholar 

  38. Y.B. Zudin, The distance between nucleate boiling sites. High Temp. 36, 662–663 (1998)

    Google Scholar 

  39. Y.B. Zudin, Calculation of the surface density of nucleation sites in nucleate boiling of a liquid. J. Eng. Phys. Thermophys. 71, 178–183 (1998)

    Article  Google Scholar 

  40. Y.B. Zudin, Boiling of liquid in the cell of a jet printer. J. Eng. Phys. Thermophys. 71, 217–220 (1998)

    Article  Google Scholar 

  41. Y.B. Zudin, Burn-out of a liquid under conditions of natural convection. J. Eng. Phys. Thermophys. 72, 50–53 (1999)

    Article  Google Scholar 

  42. Y.B. Zudin, Wall non-isothermicity effect on the heat exchange in jet reflux. J. Eng. Phys. Thermophys. 72, 309–312 (1999)

    Article  Google Scholar 

  43. Y.B. Zudin, Model of heat transfer in bubble boiling. J. Eng. Phys. Thermophys. 72, 438–444 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zudin, Y.B. (2012). Practical Applications of the Theory. In: Theory of Periodic Conjugate Heat Transfer. Mathematical Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21421-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21421-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21420-2

  • Online ISBN: 978-3-642-21421-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics