Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1024 Accesses

Part of the book series: Mathematical Engineering ((MATHENGIN,volume 5))

Abstract

Real stationary processes of heat transfer, as a rule, can be considered stationary only on the average. Actually (except for the purely laminar cases), flows are always subjected to various periodic, quasi-periodic, and other casual oscillations of velocities, pressure, temperatures, momentum and energy fluxes, vapor content and interphase boundaries about their average values. Such oscillations can be smooth and periodic (wave flow of a liquid film or vapor, a flow of a fluctuating coolant over a body), sharp and periodic (hydrodynamics and heat transfer at slug flow of a two-phase media in a vertical pipe; nucleate and film boiling process), on can have complex stochastic character (turbulent flows). Oscillations of parameters have in some cases spatial nature, and in others they are temporal, and generally one can say that the oscillations have mixed spatiotemporal character.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.O. Hinze, Turbulence (McGraw-Hill, New York, 1975)

    Google Scholar 

  2. C. Dietz, M. Henze, S.O. Neumann, J. von Wolfersdorf, B. Weigand, Numerical and experimental investigation of heat transfer and fluid flow around a vortex generator using explicit algebraic models for the turbulent heat flux. Proc. of the 17th Int. Symp. on Airbreathing Engines, September 4–9 Munich, Germany, Paper ISABE-2005–1197 (2005)

    Google Scholar 

  3. H.D. Baehr, K. Stephan, Heat and Mass Transfer (Springer, Berlin, 1998)

    MATH  Google Scholar 

  4. T. Cebeci, Convective Heat Transfer (Springer, Berlin, 2002)

    MATH  Google Scholar 

  5. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon, London)

    Google Scholar 

  6. G.B. Wallis, One-dimensional Two-phase Flow (McGraw-Hill, New York, 1969)

    Google Scholar 

  7. F. Mayinger, Strömung und Wärmeübergang in Gas-Flüssigkeits-Gemischen (Springer, Wien, 1982)

    Google Scholar 

  8. P.L. Kapitsa, Wave flow of thin layers of a viscous liquid. Part 1. Free flow. Zh. Eksp. Teor. Fiz 18(1), 1–28 (1948) (in Russian)

    Google Scholar 

  9. P.L. Kapitsa, S.P. Kapitsa, Wave flow of thin layers of a viscous liquid. Part II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Eksp. Teor. Fiz 19(2), 105–120 (1949) (in Russian)

    Google Scholar 

  10. E.R. Corino, R.S. Brodkey, A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37(1), 1–30 (1969)

    Article  Google Scholar 

  11. H.T. Kim, S.J. Kline, W.C. Reynolds, The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50(1), 133–160 (1971)

    Article  Google Scholar 

  12. V. Reyer, Ein Verfahren zur simultanen Berechnung gekoppelter transienter Temperaturfelder in Strömungen und Strukturen. Dissertation, Berlin Technical University (2002)

    Google Scholar 

  13. R.S. Webster, A numerical study of the conjugate conduction-convection heat transfer problem. Dissertation, Michigan State University (2001)

    Google Scholar 

  14. D. Gorenflo Behältersieden (Sieden bei freier Konvektion). VDI - Wärmeatlas, Hab.(Springer, Berlin, 2002)

    Google Scholar 

  15. H. Schlichting, K. Gersten, Grenzschicht-Theorie (Springer, Berlin, 1997)

    MATH  Google Scholar 

  16. T. Cebeci, P. Bradshaw Physical and Computational Aspects of Convective Heat Transfer. (Springer New York, 1984)

    Google Scholar 

  17. E.V. Ametistov, V.A. Grigoriev, Y.M. Pavlov, Effect of thermophysical properties of heating surface material on heat transfer during boiling of water and ethanol. High Temp. 10 821–823 (1972)

    Google Scholar 

  18. V.A. Grigoriev, Y.M. Pavlov, E.V. Ametisov, A.V. Klimenko, V.V. Klimenko, Concerning the influence of thermal properties of heating surface material on heat transfer intensity of nucleate pool boiling of liquids including cryogenic ones. Cryogenics 2 94–96 (1977)

    Article  Google Scholar 

  19. K. Stephan, Heat Transfer in Condensation and Boiling (Springer, Berlin, 1992)

    Google Scholar 

  20. M.A. Habib, A.M. Attya, S.A.M. Said, A.I. Eid, A.Z. Aly, Heat transfer characteristics and Nusselt number correlation of turbulent pulsating pipe air flows. Heat Mass Transfer 40 307–318 (2004)

    Article  Google Scholar 

  21. A. Yakhot, M. Arad, G. Ben-Dor Numerical investigation of a laminar pulsating flow in a rectangular duct. Int. J. Numer. Meth. Fluids 29 935–950 (1999)

    MATH  Google Scholar 

  22. Ch. Walther,H.-D. Kühl, Th. Pfeffer, S. Schulz, Influence of developing flow on the heat transfer in laminar oscillating pipe flow. Forschung im Ingenieurwesen 64, 55–64 (1998)

    Article  Google Scholar 

  23. C. Walther, H-D Kühl, S. Schulz, Numerical investigations on the heat transfer in turbulent oscillating pipe flow. Heat Mass Transfer 36, 135–141 (2000)

    Google Scholar 

  24. A. Mosyak, E. Pogrebnyak, G. Hetsroni Effect of constant heat flux boundary condition on wall temperature fluctuations. ASME J. Heat Transfer 123, 213–218 (2001)

    Google Scholar 

  25. A.S. Dorfman, A new type of boundary condition in convective heat transfer problems. Int. J Heat Mass Transfer 28, 1197–1203 (1985)

    Article  MATH  Google Scholar 

  26. A.A. Dolinskiy, A.S. Dorfman, B.V. Davydenko, Conjugate heat and mass transfer in continuous processes of convective drying Int. J Heat Mass Transfer 34, 2883–2889 (1989)

    Article  Google Scholar 

  27. A.S. Dorfman, Transient heat transfer between a semi-infinite hot plate and a flowing cooling liquid film. ASME J. Heat Transfer 126, 149–154 (2004)

    Article  Google Scholar 

  28. S.M. Kiwan, M.A. Al-Nimr, Analytical solution for conjugated heat transfer in pipes and ducts. Heat Mass Transfer 38, 513–516 (2002)

    Article  Google Scholar 

  29. H.M. Soliman, M.M. Rahman, Analytical solution of conjugate heat transfer and optimum configurations of flat-plate heat exchangers with circular flow channels. Heat Mass Transfer 42, 596–607 (2006)

    Article  Google Scholar 

  30. Q. Wang, Y. Jaluria, Three-dimensional conjugate heat transfer in a horizontal channel with discrete heating. ASME J. Heat Transfer 126, 642–647 (2004)

    Article  Google Scholar 

  31. B. Weigand, D. Lauffer, The extended Graetz problem with piecewise constant wall temperature for pipe and channel flows. Int. J. Heat Mass Transfer 471, 5303–5312 (2004)

    Article  Google Scholar 

  32. B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow Problems (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  33. D.A. Labuntsov, Y.B. Zudin, Peculiarities of the process of heat transfer from a surface of a plate to a flow with a spatio-temporal periodic variation of the heat transfer coefficient. Part 1. General analysis. Works of Moscow Power Engineering Institute. Issue 347, 84–92 (1977) (in Russian)

    Google Scholar 

  34. D.A. Labuntsov, Y.B. Zudin, Peculiarities of the process of heat transfer from a surface of a plate to a flow with a spatio-temporal periodic variation of the heat transfer coefficient. Part 2. Solution of characteristic problems. Works of Moscow Power Engineering Institute. Issue 347, 93–100 (1977) (in Russian)

    Google Scholar 

  35. Y.B. Zudin, D.A. Labuntsov, Peculiarities of heat transfer at periodic asymmetrical regime. Works of Moscow Power Engineering Institute. Issue 377, 35–39 (1978) (in Russian)

    Google Scholar 

  36. Y.B. Zudin, Analysis of Heat-Transfer Processes of Periodic Intensity. Dissertation. Moscow Power Engineering Institute (1980) (in Russian)

    Google Scholar 

  37. D.A. Labuntsov, Y.B. Zudin, Heat-Transfer Processes of Periodic Intensity (Energoatomizdat, Moscow, 1984) (in Russian)

    Google Scholar 

  38. Y.B. Zudin, Calculation of an empirical heat-transfer coefficient with a stepped periodic change in heat-transfer rate. High Temp. 29, 740–745 (1991)

    Google Scholar 

  39. Y.B. Zudin, A method of heat-exchange calculation in the presence of periodic intensity fluctuations. High Temp. 29, 921–928 (1991)

    Google Scholar 

  40. Y.B. Zudin, Analog of the rayleigh equation for the problem of bubble dynamics in a tube. J. Eng. Phys. Thermophys. 63, 672–675 (1992)

    Article  Google Scholar 

  41. Y.B. Zudin, The calculation of parameters of the evaporating meniscus a thin liquid film. High Temp. 31, 714–716 (1993)

    Google Scholar 

  42. Y.B. Zudin, Calculation of effect for supplying heat to the wall on the averaged heat exchange coefficient. Thermophys. Aeromech. 1, 117–119 (1994)

    Google Scholar 

  43. Y.B. Zudin, Averaged heat transfer during periodic fluctuations of the heat transfer intensity of the surface of a plate, a cylinder, or a sphere. J. Eng. Phys. Thermophys. 68, 193–196 (1995)

    Article  MathSciNet  Google Scholar 

  44. Y.B. Zudin, Calculation of heat transfer characteristics with periodic pulsations of “cellular structure” intensity. Appl. Energy Russ. J. Fuel Power Heat Syst. 33, 151–159 (1995)

    Google Scholar 

  45. Y.B. Zudin, Design of the wall heat effect on averaged convective heat transfer in processes of heat exchange with periodic intensity. Appl. Energy Russ. J. Fuel Power Heat Syst. 33, 76–81 (1995)

    Google Scholar 

  46. Y.B. Zudin, (1995) Averaged heat exchange for double-sided periodicitity. Thermophys. Aeromech. 2, 281–287

    Google Scholar 

  47. Y.B. Zudin, On two types of pulsations of true heat transfer coefficient (a progressive wave and a cell). Thermophys. Aeromech. 3, 341–346 (1996)

    Google Scholar 

  48. Y.B. Zudin, Pulse law of true heat transfer coefficient pulsatinons. Appl. Energy Russ. J. Fuel Power Heat Syst. 34, 142–147 (1996)

    Google Scholar 

  49. Y.B. Zudin, Theory on heat-transfer processes of periodic intensity. Habilitationsschrift. Moscow Power Engineering Institute (1996) (in Russian)

    Google Scholar 

  50. Y.B. Zudin, Calculation of critical thermal loads under extreme intensities of mass forces. Heat Transfer Res. 28, 481–483 (1997)

    Google Scholar 

  51. Y.B. Zudin, Influence of the coefficient of thermal activity of a wall on heat transfer in transient boiling. J. Eng. Phys. Thermophys. 71, 696–698 (1997)

    Article  Google Scholar 

  52. Y.B. Zudin, Law of vapor-bubble growth in a tube in the region of low pressures. J. Eng. Phys. Thermophys. 70, 714–717 (1997)

    Article  Google Scholar 

  53. Y.B. Zudin, The use of the model of evaporating macrolayer for determining the characteristics of nucleate boiling High Temp. 35, 565–571 (1997)

    Google Scholar 

  54. Y.B. Zudin, Calculation of the surface density of nucleation sites in nucleate boiling of a liquid. J. Eng. Phys. Thermophys. 71, 178–183 (1998)

    Article  Google Scholar 

  55. Y.B. Zudin, Boiling of liquid in the cell of a jet printer. J. Eng. Phys. Thermophys. 71, 217–220 (1998)

    Article  Google Scholar 

  56. Y.B. Zudin, Effect of the thermophysical properties of the wall on the heat transfer coefficient. Therm. Eng. 45(3), 206–209 (1998)

    Google Scholar 

  57. Y.B. Zudin, The distance between nucleate boiling sites. High Temp. 36, 662–663 (1998)

    Google Scholar 

  58. Y.B. Zudin, Temperature waves on a wall surface. Russ. Dokl. Phys. J. Acad. Sci. 43(5) 313–314 (1998)

    Google Scholar 

  59. Y.B. Zudin, Burn-out of a liquid under conditions of natural convection. J. Eng. Phys. Thermophys. 72, 50–53 (1999)

    Article  Google Scholar 

  60. Y.B. Zudin, Wall non-isothermicity effect on the heat exchange in jet reflux. J. Eng. Phys. Thermophys. 72, 309–312 (1999)

    Article  Google Scholar 

  61. Y.B. Zudin, Model of heat Transfer in bubble boiling. J. Eng. Phys. Thermophys. 72, 438–444 (1999)

    Article  Google Scholar 

  62. Y.B. Zudin, Self-oscillating process of heat exchange with periodic intensity. J. Eng. Phys. Thermophys. 72, 635–641 (1999)

    Article  Google Scholar 

  63. Y.B. Zudin, The effect of the method for supplying heat to the wall on the averaged heat-transfer coefficient in periodic rate heat-transfer prozesses. Therm. Eng. 46(3), 239–243 (1999)

    Google Scholar 

  64. Y.B. Zudin, Harmonic law of fluctuations of the true heat transfer coefficient. Thermophys. Aeromech. 6, 79–88 (1999)

    Google Scholar 

  65. Y.B. Zudin, Some properties of the solution of the heat-conduction equation with periodic boundary condition of third kind. Thermophys. Aeromech 6, 391–398 (1999)

    Google Scholar 

  66. Y.B. Zudin, Processes of heat exchange with periodic intensity. Therm. Eng. 47(6), 124–128 (2000)

    Google Scholar 

  67. Y.B. Zudin, Analysis of the processes of heat transfer with periodic intensity with allowance for temperature fluctuations in the heat carrier. J. Eng. Phys. Thermophys. 73, 243–247 (2000)

    Article  Google Scholar 

  68. Y.B. Zudin, Averaging of the heat-transfer coefficient in the processes of heat exchange with periodic intensity. J. Eng. Phys. Thermophys. 73, 643–647 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zudin, Y.B. (2012). Introduction. In: Theory of Periodic Conjugate Heat Transfer. Mathematical Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21421-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21421-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21420-2

  • Online ISBN: 978-3-642-21421-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics