Skip to main content

Modeling Heavy Ion Radiation Effects

  • Chapter
  • First Online:
Ion Beam Therapy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL,volume 320))

Abstract

IBT requires a consideration of the complex dependencies of the relative biological effectiveness (RBE). In this chapter, several approaches based on biophysical modeling are reviewed with an emphasis on the Local Effect Model, since this is the only biophysical model that has been used for treatment planning. Basic considerations, the comparison to experimental data, and the integration into a treatment planning system are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually α0 denotes the linear component of the radiation response for the limit of LET = 0. In practical applications, it might be assumed that this limit is also true for X-rays [13], however, this assumption requires extra care [11].

References

  1. M. Durante, F.A. Cucinotta, Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer 8, 465–472 (2008)

    Article  Google Scholar 

  2. D. Schardt, T. Elsässer, D. Schulz-Ertner, Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 82, 383–425 (2010)

    Article  ADS  Google Scholar 

  3. M. Scholz, Effects of ion radiation on cells and tissues. Adv. Polym. Sci. 62, 96–155 (2003).

    Google Scholar 

  4. T. Kanai, Y. Furusawa, K. Fukutsu et al., Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion radiotherapy. Radiat. Res. 147, 78–85 (1997)

    Article  Google Scholar 

  5. M. Zaider, H.H. Rossi, The synergistic effects of different radiations. Radiat. Res. 83, 732–739 (1980)

    Article  Google Scholar 

  6. R. Katz, B. Ackerson, M. Homayoonfar et al., Inactivation of cells by heavy ion bombardment. Radiat. Res. 47, 402–425 (1971)

    Article  Google Scholar 

  7. R. Katz, S.C. Sharma, Heavy particles in therapy: an application of track theory. Phys. Med. Biol. 19, 413–435 (1974)

    Article  Google Scholar 

  8. M.P. Waligorski, M. Hollmark, J. Lesiak, A simple track structure model of ion beam radiotherapy. Radiat. Prot. Dosim. 122, 471–474 (2006)

    Article  Google Scholar 

  9. R.B. Hawkins, A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat. Res. 140, 366–374 (1994)

    Article  Google Scholar 

  10. R.B. Hawkins, A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE with LET. Radiat. Res. 160, 61–69 (2003)

    Article  ADS  Google Scholar 

  11. Y. Kase, T. Kanai, N. Matsufuji et al., Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Phys. Med. Biol. 53, 37–59 (2008)

    Article  Google Scholar 

  12. R.B. Hawkins, The relationship between the sensitivity of cells to high-energy photons and the RBE of particle radiation used in radiotherapy. Radiat. Res. 172, 761–776 (2009)

    Article  Google Scholar 

  13. Y. Kase, T. Kanai, Y. Matsumoto et al., Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat. Res. 166, 629–638 (2006)

    Article  Google Scholar 

  14. J. Kiefer, H. Straaten, A model of ion track structure based on classical collision dynamics. Phys. Med. Biol. 31, 1201–1209 (1986)

    Article  Google Scholar 

  15. T. Zacharias, W. Dörr, W. Enghardt et al., Acute response of pig skin to irradiation with 12C-ions or 200 kV X-rays. Acta Oncol. 36, 637–642 (1997)

    Article  Google Scholar 

  16. C.P. Karger, P. Peschke, R. Sanchez-Brandelik et al., Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications. Int. J. Radiat. Oncol. Biol. Phys. 66, 1488–1497 (2006)

    Article  Google Scholar 

  17. T. Elsässer, S. Brons, K. Psonka et al., Biophysical modeling of fragment length distributions of DNA plasmids after X and heavy-ion irradiation analyzed by atomic force microscopy. Radiat. Res. 169, 649–659 (2008)

    Article  Google Scholar 

  18. T. Elsässer, M. Scholz, Cluster effects within the Local Effect Model. Radiat. Res. 167, 319–329 (2007)

    Article  Google Scholar 

  19. M. Scholz, G. Kraft, Track structure and the calculation of biological effects of heavy charged particles. Adv. Space Res. 18, 5–14 (1996)

    Article  ADS  Google Scholar 

  20. B. Fertil, I. Reydellet, P.J. Deschavanne, A benchmark of cell survival models using survival curves for human cells after completion of repair of potentially lethal damage. Radiat. Res. 138, 61–69 (1994)

    Article  Google Scholar 

  21. C. Park, L. Papiez, S. Zhang et al., Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 70, 847–852 (2008)

    Article  Google Scholar 

  22. M. Astrahan, Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation. Med. Phys. 35, 4161–4172 (2008)

    Article  Google Scholar 

  23. M. Scholz, A.M. Kellerer, W. Kraft-Weyrather et al., Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat. Environ. Biophys. 36, 59–66 (1997)

    Article  Google Scholar 

  24. V.V. Moiseenko, R.N. Hamm, A.J. Waker et al., Calculation of radiation-induced DNA damage from photons and tritium beta-particles. Part I: Model formulation and basic results. Radiat. Environ. Biophys. 40, 23–31 (2001)

    Google Scholar 

  25. A. Mozumder, J.L. Magee, Track-core radius of charged particles at relativistic speed in condensed media. J. Chem. Phys. 60, 1145–1148 (1974)

    Article  ADS  Google Scholar 

  26. T. Elsässer, W. Weyrather, T. Friedrich et al., Quantification of the relative biological effectiveness for ion beam radiotherapy: Direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 78, 1177–1183 (2010)

    Article  Google Scholar 

  27. A. Mitaroff, W. Kraft-Weyrather, O.B. Geiss et al., Biological verification of heavy ion treatment planning. Radiat. Environ. Biophys. 37, 47–51 (1998)

    Article  Google Scholar 

  28. M. Krämer, M. Scholz, Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys. Med. Biol. 45, 3319–3330 (2000)

    Article  Google Scholar 

  29. T. Sato, Y. Kase, R. Watanabe et al., Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model. Radiat. Res. 171, 107–117 (2009)

    Article  Google Scholar 

  30. H. Tsujii, J.E. Mizoe, T. Kamada et al., Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiother. Oncol. 73(Suppl 2), S41–S49 (2004)

    Article  Google Scholar 

  31. J.F. Fowler, The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694 (1989)

    Article  Google Scholar 

  32. C.P. Karger, O. Jäkel, M. Scholz et al., What is the clinically relevant relative biologic effectiveness? A warning for fractionated treatments with high linear energy transfer radiation: in regard to Dasu and Toma-Dasu. (Int J Radiat Oncol Biol Phys 2008;70:867–874). Int. J. Radiat. Oncol. Biol. Phys. 70, 1614–1615 (2008)

    Google Scholar 

  33. A. Brahme, Recent advances in light ion radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 58, 603–616 (2004)

    Article  Google Scholar 

  34. U. Amaldi, G. Kraft, European developments in radiotherapy with beams of large radiobiological effectiveness. J. Radiat. Res. (Tokyo) 48(Suppl A), A27–A41 (2007)

    Google Scholar 

Download references

Acknowledgment

The author expresses his gratitude to Dr. Michael Scholz (GSI) for his valuable input that significantly improved this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Elsässer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elsässer, T. (2012). Modeling Heavy Ion Radiation Effects. In: Linz, U. (eds) Ion Beam Therapy. Biological and Medical Physics, Biomedical Engineering, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21414-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21414-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21413-4

  • Online ISBN: 978-3-642-21414-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics