Skip to main content

Treatment Planning for Ion Beam Therapy

  • Chapter
  • First Online:
Ion Beam Therapy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL,volume 320))

Abstract

The special aspects of treatment planning for ion beams are outlined in this chapter, starting with positioning and immobilization of the patient, describing imaging and segmentation, definition of treatment parameters, dose calculation and optimization, and, finally, plan assessment, verification, and quality assurance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Miyamoto, M. Baba, T. Sugane, et al., Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J. Thorac. Oncol. 2, 916–926 (2007)

    Article  Google Scholar 

  2. T. Kamada, H. Tsujii, J.E. Mizoe, et al., A horizontal CT system dedicated to heavy-ion beam treatment. Radiother. Oncol. 50, 235–237 (1999)

    Article  Google Scholar 

  3. W. Schneider, T. Bortfeld, W. Schlegel, Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys. Med. Biol. 45, 459–478 (2000)

    Article  Google Scholar 

  4. B. Schaffner, E. Pedroni, The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power. Phys. Med. Biol. 43, 1579–1592 (1998)

    Article  Google Scholar 

  5. O. Jäkel, G.H. Hartmann, C.P. Karger, et al., Quality assurance for a treatment planning system in scanned ion beam therapy. Med. Phys. 27,1588–1600 (2000)

    Article  Google Scholar 

  6. E. Rietzel, D. Schardt, T. Haberer, Range accuracy in carbon ion treatment planning based on CT-calibration with real tissue samples. Radiat. Oncol. 2, 14 (2007)

    Article  Google Scholar 

  7. H. Wertz, O. Jäkel, Influence of iodine contrast agent on the range of ion beams for radiotherapy. Med. Phys. 31, 767–773 (2004)

    Article  Google Scholar 

  8. O. Jäkel, Ranges of ions in metals for use in particle treatment planning. Phys. Med. Biol. 51, N173–N177 (2006)

    Article  Google Scholar 

  9. O. Jäkel, P. Reiss, The influence of metal artefacts on the range of ion beams. Phys. Med. Biol. 52, 635–644 (2007)

    Article  Google Scholar 

  10. O. Jäkel, M. Krämer, C.P. Karger, et al., Treatment planning for heavy ion radiotherapy: clinical implementation and application. Phys. Med. Biol. 46, 1101–1116 (2001)

    Article  Google Scholar 

  11. A.J. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties. Phys. Med. Biol. 53, 1027–1042 (2008)

    Article  Google Scholar 

  12. G. Cabal, S. Luan, O. Jäkel, An algorithm for optimizing beam angle configuration in particle therapy, Proceedings of 48th Meeting of the Particle Therapy Co-Operative Group (PTCOG), Heidelberg, Germany, 28 Sep–3 Oct 2009, German Medical Science Publishing House, Düsseldorf, 2009. http://www.egms.de/static/en/meetings/ptcog2009/09ptcog033.shtml. Accessed 21 Oct 2010

  13. G. Cabal, S. Luan, O. Jäkel, A beam angle selection algorithm for particle therapy. Presented at 52nd Annual Meeting of American Association of Physicists in Medicine (AAPM), Philadelphia, PA, 18–22 Juy 2010

    Google Scholar 

  14. S. Speer, J. Karg, M. Schmidt, R.G. Müller, Beam Angle Optimization in Particle Therapy with OPTiC. Proceedings of IFMBE World Congress Munich, Germany, 7–12 Sept 2009, pp. 562–565

    Google Scholar 

  15. M. Bangert, U. Oelfke, A novel framework for beam angle optimization in intensity modulated hadron therapy, Proceedings of 48th Meeting of the Particle Therapy Co-Operative Group (PTCOG), Heidelberg, Germany, 28Sep–3 Oct 2009 (German Medical Science Publishing House, Düsseldorf, 2009). http://www.egms.de/static/en/meetings/ptcog2009/09ptcog015.shtml. Accessed 21 Oct 2010

  16. International Commission on Radiation Units and Measurements. Report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). J. ICRU 10, 1 (2010)

    Google Scholar 

  17. G. Cabal, O. Jäkel, Towards a novel approach for PTV definition in particle therapy. Presented at 49th Annual Meeting of the Particle Therapy Co-operative Group (PTCOG) Gunma, Japan, 20–22 May 2010

    Google Scholar 

  18. J.R. Alonso, Review of Ion Beam Therapy: Present and Future. Report of Lawrence Berkeley National Laboratory, LBNL – 45137, 2000. http://www.escholarship.org/uc/item/3nm7286j?display=all#page-1. Accessed 21 Oct 2010

  19. O. Jäkel, C.P. Karger, J. Debus, The future of heavy ion radiotherapy. Med. Phys. 35, 5653–5663 (2008)

    Article  Google Scholar 

  20. O. Jäkel, Medical physics aspects of particle therapy. Radiat. Prot. Dosim. 137, 156–166 (2009)

    Article  Google Scholar 

  21. M. Endo, H. Koyama-Ito, S. Minohara, et al., HIPLAN – a heavy ion treatment planning system at HIMAC. J. Jpn. Soc. Ther. Radiol. Oncol. 8, 231–238 (1996)

    Google Scholar 

  22. P.L. Petti, Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 35, 1049–1057 (1996)

    Article  Google Scholar 

  23. P.L. Petti, Differential-pencil-beam dose calculations for charged particles. Med. Phys. 19, 137–149 (1992)

    Article  Google Scholar 

  24. M. Krämer, O. Jäkel, T. Haberer, et al., Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys. Med. Biol. 45, 3299–3317 (2000)

    Article  Google Scholar 

  25. A.K. Carlsson, P. Andreo, A. Brahme, Monte Carlo and analytical calculation of proton pencil beams for computerized treatment plan optimization. Phys. Med. Biol. 42, 1033–1053 (1997)

    Article  Google Scholar 

  26. L. Hong, M. Goitein, M. Bucciolini, et al., A pencil beam algorithm for proton dose calculations. Phys. Med. Biol. 41, 1305–1330 (1996)

    Article  Google Scholar 

  27. T. Inaniwa, T. Furukawa, A. Nagano, et al., Field-size effect of physical doses in carbon-ion scanning using range shifter plates. Med. Phys. 36, 2889–2897 (2009)

    Article  Google Scholar 

  28. T. Inaniwa, T. Furukawa, T. Tomitani, et al., Optimization for fast-scanning irradiation in particle therapy. Med. Phys. 34, 3302–3311 (2007)

    Article  Google Scholar 

  29. U. Weber, G. Kraft, Comparison of carbon ions versus protons. Cancer J. 15, 325–332 (2009)

    Article  Google Scholar 

  30. N. Kanematsu, M. Komori, S. Yonai, et al., Dynamic splitting of Gaussian pencil beams in heterogeneity-correction algorithms for radiotherapy with heavy charged particles. Phys. Med. Biol. 54, 2015–2027 (2009)

    Article  Google Scholar 

  31. N. Kanematsu, Semi-empirical formulation of multiple scattering for the Gaussian beam model of heavy charged particles stopping in tissue-like matter. Phys. Med. Biol. 54, N67–N73 (2009)

    Article  ADS  Google Scholar 

  32. A. Mairani, S. Brons, F. Cerutti, et al., The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy. Phys. Med. Biol. 55, 4273–4289 (2010)

    Article  Google Scholar 

  33. K. Parodi, A. Mairani, S. Brons, et al., The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study. Phys. Med. Biol. 55, 5169–5187 (2010)

    Article  Google Scholar 

  34. F. Sommerer, K. Parodi, A. Ferrari, et al., Investigating the accuracy of the FLUKA code for transport of therapeutic ion beams in matter. Phys. Med. Biol. 51, 4385–4398 (2006)

    Article  Google Scholar 

  35. K. Gunzert-Marx, D. Schardt, R.S. Simon, The fast neutron component in treatment irradiations with 12C beam. Radiother. Oncol. 73(Suppl 2), S92–S95 (2004)

    Article  Google Scholar 

  36. K. Gunzert-Marx, D. Schardt, R.S. Simon, Fast neutrons produced by nuclear fragmentation in treatment irradiations with 12C beam. Radiat. Prot. Dosim. 110, 595–600 (2004)

    Article  Google Scholar 

  37. T. Kanai, M. Endo, S. Minohara, et al., Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 44, 201–210 (1999)

    Article  Google Scholar 

  38. N. Kanematsu, M. Torikoshi, M. Mizota, et al., Secondary range shifting with range compensator for reduction of beam data library in heavy-ion radiotherapy. Med. Phys. 34, 1907–1910 (2007)

    Article  Google Scholar 

  39. O. Jäkel, D. Schulz-Ertner, J. Debus, Specifying carbon ion doses for radiotherapy: the Heidelberg approach. J. Radiat. Res. (Tokyo) 48, A87–A95 (2007)

    Article  Google Scholar 

  40. M. Krämer, M. Scholz, Rapid calculation of biological effects in ion radiotherapy. Phys. Med. Biol. 51, 1959–1970 (2006)

    Article  Google Scholar 

  41. M. Ellerbrock, O. Jäkel, M. Krämer, et al., Clinical implementation of multiple field dose optimization in heavy ion treatment planning. Radiother. Oncol. 81, S358 (2006)

    Google Scholar 

  42. M. Ellerbrock, O. Jäkel, M. Krämer, et al., Clinical implementation of intensity modulated heavy ion therapy. Radiother. Oncol. 84, 129 (2007)

    Google Scholar 

  43. D. Pflugfelder, J.J. Wilkens, U. Oelfke, Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys. Med. Biol. 53, 1689–1700 (2008)

    Article  Google Scholar 

  44. D. Schulz-Ertner, A. Nikoghosyan, B. Didinger, et al., Therapy strategies for locally advanced adenoid cystic carcinomas using modern radiation therapy techniques. Cancer 104, 338–344 (2005)

    Article  Google Scholar 

  45. International Atomic Energy Agency. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer, IAEA Tech Rep Ser 430 (IAEA, Vienna, 2004). http://www-pub.iaea.org/MTCD/publications/PDF/TRS430_web.pdf. Accessed 21 Oct 2010

  46. International Atomic Energy Agency. Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. IAEA-TECDOC-1540 (IAEA, Vienna, 2007)

    Google Scholar 

  47. International Atomic Energy Agency. Commissioning of Radiotherapy Treatment Planning Systems – Testing for Typical External Beam Treatment Techniques. IAEA-TECDOC-1583 (IAEA, Vienna, 2008)

    Google Scholar 

  48. B.A. Fraass, QA issues for computer-controlled treatment delivery: this is not your old R/V system any more! Int. J. Radiat. Oncol. Biol. Phys. 71, S98–S102 (2008)

    Article  Google Scholar 

  49. D.J. Van, R.B. Barnett, J.E. Cygler, et al., Commissioning and quality assurance of treatment planning computers. Int. J. Radiat. Oncol. Biol. Phys. 26, 261–273 (1993)

    Article  Google Scholar 

  50. J. Jacky, C.P. White, Testing a 3-D radiation therapy planning program. Int. J. Radiat. Oncol. Biol. Phys. 18, 253–261 (1990)

    Article  Google Scholar 

  51. A. Gemmel, B. Hasch, M. Ellerbrock, et al., Biological dose optimization with multiple ion fields. Phys. Med. Biol. 53, 6991–7012 (2008)

    Article  Google Scholar 

  52. A. Mitaroff, W. Kraft-Weyrather, O.B. Geiss, et al., Biological verification of heavy ion treatment planning. Radiat. Environ. Biophys. 37, 47–51 (1998)

    Article  Google Scholar 

  53. C.P. Karger, O. Jäkel, G.H. Hartmann, A system for three-dimensional dosimetric verification of treatment plans in intensity-modulated radiotherapy with heavy ions. Med. Phys. 26, 2125–2132 (1999)

    Article  Google Scholar 

  54. M. Martisikova, O. Jäkel, Dosimetric properties of Gafchromic(R) EBT films in medical carbon ion beams. Phys. Med. Biol. 55, 5557–5567 (2010)

    Article  Google Scholar 

  55. B. Spielberger, M. Krämer, G. Kraft, Three-dimensional dose verification with x-ray films in conformal carbon ion therapy. Phys. Med. Biol. 48, 497–505 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Jäkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jäkel, O. (2012). Treatment Planning for Ion Beam Therapy. In: Linz, U. (eds) Ion Beam Therapy. Biological and Medical Physics, Biomedical Engineering, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21414-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21414-1_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21413-4

  • Online ISBN: 978-3-642-21414-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics