Skip to main content

Dosimetry Techniques for Ion Beams

  • Chapter
  • First Online:
Ion Beam Therapy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL,volume 320))

  • 2006 Accesses

Abstract

Beam dosimetry is a key issue in ion beam therapy (IBT). In order to get a real clinical advantage from the physical and radiobiological features of ions, it is mandatory to develop a novel approach for determining the absolute and relative dose. New detectors and innovative measurement techniques have been implemented following the recommendations of International Standardization Committees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice Based on Standards of Absorbed Dose to Water. IAEA Techn Report Series 398 (IAEA, Vienna, 2000)

    Google Scholar 

  2. J.T. Lyman, M. Awshalom, P. Berardo, et al., Protocol for Heavy Charged-Particle Therapy Beam Dosimetry. AAPM Task Group 20, Report 16 (AIP, New York, 1986)

    Google Scholar 

  3. S. Vynckier, D.E. Bonnett, D.T.L. Jones, Code of practice for clinical proton dosimetry. Radiother. Oncol. 20, 53–63 (1991)

    Article  Google Scholar 

  4. S. Vynckier, D.E. Bonnett, D.T.L. Jones, Supplement to the code of practice for clinical proton dosimetry. Radiother. Oncol. 32, 174–179 (1994)

    Article  Google Scholar 

  5. International Commission on Radiation Units and Measurements. Clinical Proton Dosimetry, Part I: Beam Production, Beam Delivery and Measurement of Absorbed Dose. ICRU Report 59 (ICRU, Bethesda, MD, 1999)

    Google Scholar 

  6. H. Paul, A comparison of recent stopping power tables for light and medium-heavy ions with experimental data and applications to radiotherapy dosimetry. Nucl. Instrum. Methods Phys. Res. B247, 166–172 (2006)

    ADS  Google Scholar 

  7. J.J. Broerse, L.T. Lyman, J. Zoetelief, Dosimetry of External Beams of Nuclear Particles, in The Dosimetry of Ionizing Radiation, ed. by K.R. Kase, B.E. Bjärngard, F.H. Attix. vol. 1 (Academic, New York, 1987), pp. 229–290

    Google Scholar 

  8. G.H. Hartmann, O. Jäkel, P. Heeg, et al., Determination of water absorbed dose in a carbon ion beam using thimble ionization chambers. Phys. Med. Biol. 44, 1193–1206 (1999)

    Article  Google Scholar 

  9. M. Sakama, T. Kanai, A. Fukumura, K. Abe, Evaluation of w values for carbon beams in air, using a graphite calorimeter. Phys. Med. Biol. 54, 1111–1130 (2009)

    Article  Google Scholar 

  10. W.T. Chu, J.W. Staples, B.A. Ludewigt, et al., Performance specifications for proton medical facility. Lawrence Berkeley Laboratory, LBL-33749, UC-000, 1993. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=10163935. Accessed 29 Oct 2010

  11. G. Cuttone, L. Raffaele, M.G. Sabini, et al., First dosimetry intercomparison results for the CATANA project. Phys. Med. 15, 121–130 (1999)

    Google Scholar 

  12. H. Palmans, F. Verhaegen, On the effective point of measurement of cylindrical ionization chambers for proton beams and other heavy charged particle beams. Phys. Med. Biol. 45, L20–L22 (2000)

    Article  ADS  Google Scholar 

  13. A. Kacperek, E. Egger, G. Cuttone, et al., Intercomparison Using Parallel Plate Ionization Chambers in Proton Eye Therapy Beam, in IAEA Standards and Codes of Practice in Medical Radiation Dosimetry, vol. 2 (IAEA, Vienna, 2003), pp. 311–319

    Google Scholar 

  14. J. Medin, E. Grussel, General characteristics of the use of silicon diode detectors for clinical dosimetry in proton beams. Phys. Med. Biol. 45, 2573–2582 (2000)

    Article  Google Scholar 

  15. M. Pacilio, C. De Angelis, S. Onori, et al., Characteristics of silicon and diamond detectors in a 60 MeV proton beam. Phys. Med. Biol. 47, N107–N112 (2002)

    Article  Google Scholar 

  16. M. Bucciolini, F. Banci Buonamici, S. Mazzocchi, et al., Characteristics of silicon and diamond detectors in a 60 MeV proton beam. Med. Phys. 30, 2149–2154 (2003)

    Article  Google Scholar 

  17. S.N. Rustgi, Evaluation of the dosimetric characteristics of a diamond detector for photon beam measurements. Med. Phys. 22, 567–570 (1995)

    Article  Google Scholar 

  18. A. Fidanzio, L. Azario, R. Miceli, et al., PTW-diamond detector: Dose rate and particle type dependence. Med. Phys. 27, 2589–2593 (2000)

    Article  Google Scholar 

  19. F. Haryanto, M. Fippel, W. Laub, et al., Investigation of photon beam output factors for conformal radiation therapy Monte Carlo simulations and measurements. Phys. Med. Biol. 47, N133–143 (2002)

    Article  ADS  Google Scholar 

  20. W. Laub, M. Alber, M. Birkner, F. Nüsslin, Monte Carlo dose computation for IMRT optimization. Phys. Med. Biol. 45, 1741–1754 (2000)

    Article  Google Scholar 

  21. W. Laub, T.W. Kaulich, F. Nüsslin, A diamond detector in the dosimetry of high-energy electron and photon beams. Phys. Med. Biol. 44, 2183–2192 (1999)

    Article  Google Scholar 

  22. C. De Angelis, S. Onori, M. Pacilio, et al., An investigation of the operative characteristics of two PTW diamond detectors in photon and electron beams. Med. Phys. 29, 248–254 (2002)

    Article  Google Scholar 

  23. S. Onori, C. De Angelis, P. Fattibene, et al., Dosimetric characterization of silicon and diamond detectors in low-energy proton beams. Phys. Med. Biol. 45, 3045–3058 (2000)

    Article  Google Scholar 

  24. G.A.P. Cirrone, G. Cuttone, P.A. Lojacono, et al. Preliminary investigation on the use of the MOSFET dosimeter in proton beams. Phys. Med. 22, 29–36 (2006)

    Article  Google Scholar 

  25. M.G. Sabini, L. Raffaele, M. Bucciolini, et al., The use of thermoluminescent detectors for measurements of proton dose distribution. Radiat. Prot. Dosim. 101, 453–456 (2002)

    Google Scholar 

  26. D.A. Low, S. Mutic, J.F. Dempsey, et al., Quantitative dosimetric verification of an IMRT planning and delivery system. Radiother. Oncol. 49, 305–316 (1998)

    Article  Google Scholar 

  27. M.G. Sabini, M. Bucciolini, G. Cuttone, et al., TLD-100 glow-curve deconvolution for the evaluation of the thermal stress and radiation damage effects. Nucl. Instrum. Methods Phys. Res. A476, 779–784 (2002)

    ADS  Google Scholar 

  28. M.F. Moyers, EDR-2 film response to charged particles. Phys. Med. Biol. 53, N165–N173 (2008)

    Article  Google Scholar 

  29. M. Martisikova, B. Ackermann, S. Klemm, O. Jäkel, Use of Gafchromic EBT film in heavy ion therapy. Nucl. Instrum. Methods Phys. Res. A591, 171–173 (2008)

    ADS  Google Scholar 

  30. E. Seravalli, M. de Boer, F. Geurink, et al., A scintillating gas detector for 2D dose measurements in clinical carbon beams. Phys. Med. Biol. 53, 4651–4665 (2008)

    Article  Google Scholar 

  31. M. McJury, M. Oldham, V.P. Cosgrove, et al., Radiation dosimetry using polymer gels: methods and applications. Br. J. Radiol. 73, 919–929 (2000)

    Google Scholar 

  32. D.A. Low, J.F. Dempsey, R. Venkatesan, et al., Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy. Med. Phys. 26, 1542–1551 (1999)

    Article  Google Scholar 

  33. I. Kantemiris, L. Petrokokkinos, A. Angelopoulos, et al., Carbon beam dosimetry using VIP polymer gel and MRI. Presented at 5th International Conference on Radiotherapy Gel Dosimetry, Hersonissos, Greece, 29 Sep–3 Oct 2008, IOP Publishing Journal of Physics, Conference Series 164 (2009)

    Google Scholar 

  34. T. Furukawa, N. Saotome, T. Inaniwa, et al., Delivery verification using 3D dose reconstruction based on fluorescence measurement in a carbon beam scanning irradiation system. Med. Phys. 35, 2235–2242 (2008)

    Article  Google Scholar 

  35. K. Parodi, T. Bortfeld, W. Enghardt PET imaging for treatment verification of ion therapy: implementation and experience at GSI Darmstadt and MGH Boston Nucl. Instrum. Methods Phys. Res. A59, 282–286 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Cuttone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cuttone, G. (2012). Dosimetry Techniques for Ion Beams. In: Linz, U. (eds) Ion Beam Therapy. Biological and Medical Physics, Biomedical Engineering, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21414-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21414-1_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21413-4

  • Online ISBN: 978-3-642-21414-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics