Skip to main content

Clinical Indications for Carbon Ion Radiotherapy and Radiation Therapy with Other Heavier Ions

  • Chapter
  • First Online:
Ion Beam Therapy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL,volume 320))

Abstract

A number of studies have shown excellent and convincing clinical results for various indications after treatment with ions heavier than protons. These include skull base chordomas and chondrosarcomas, hepatocellular carcinomas, recurrent rectal cancer, high-risk meningiomas, or soft-tissue and bone sarcomas. This chapter outlines these trials and provides a medical rationale for their choice before they are discussed in depth in subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Colli, O. Al Mefty, Chordomas of the craniocervical junction: follow-up review and prognostic factors. J. Neurosurg. 95, 933–943 (2001)

    Article  Google Scholar 

  2. D. Schulz-Ertner, C.P. Karger, A. Feuerhake, et al., Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int. J. Radiat. Oncol. Biol. Phys. 68, 449–457 (2007)

    Article  Google Scholar 

  3. D. Schulz-Ertner, A. Nikoghosyan, H. Hof, et al., Carbon ion radiotherapy of skull base chondrosarcomas. Int. J. Radiat. Oncol. Biol. Phys. 67, 171–177 (2007)

    Article  Google Scholar 

  4. J.E. Mizoe, A. Hasegawa, R. Takagi, et al., Carbon ion radiotherapy for skull base chordoma. Skull Base 19, 219–224 (2009)

    Article  Google Scholar 

  5. A.V. Nikoghosyan, I. Karapanagiotou-Schenkel, M.W. Munter, et al., Randomised trial of proton vs. carbon ion radiation therapy in patients with chordoma of the skull base, clinical phase III study (HIT-1-Study). BMC Cancer 10, 607 (2010)

    Google Scholar 

  6. A.V. Nikoghosyan, G. Rauch, M.W. Munter, et al., Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study. BMC Cancer 10, 606 (2010)

    Google Scholar 

  7. J.E. Mizoe, H. Tsujii, A. Hasegawa, et al., Phase I/II clinical trial of carbon ion radiotherapy for malignant gliomas: combined X-ray radiotherapy, chemotherapy, and carbon ion radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 69, 390–396 (2007)

    Article  Google Scholar 

  8. R. Stupp, M.E. Hegi, W.P. Mason, et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009)

    Article  Google Scholar 

  9. S.E. Combs, M. Kieser, S. Rieken, et al., Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: the CLEOPATRA trial. BMC Cancer 10, 478 (2010)

    Article  Google Scholar 

  10. S.E. Combs, I. Burkholder, L. Edler, et al., Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: the CINDERELLA trial. BMC Cancer 10, 533 (2010)

    Article  Google Scholar 

  11. E.B. Hug, A. Devries, A.F. Thornton, et al., Management of atypical and malignant meningiomas: role of high-dose, 3D-conformal radiation therapy. J. Neurooncol. 48, 151–160 (2000)

    Article  Google Scholar 

  12. C. Boskos, L. Feuvret, G. Noël, et al., Combined proton and photon conformal radiotherapy for intracranial atypical and malignant meningioma. Int. J. Radiat. Oncol. Biol. Phys. 75, 399–406 (2009)

    Article  Google Scholar 

  13. G. Noël, M.A. Bollet, V. Calugaru, et al., Functional outcome of patients with benign meningioma treated by 3D conformal irradiation with a combination of photons and protons. Int. J. Radiat. Oncol. Biol. Phys. 62, 1412–1422 (2005)

    Article  Google Scholar 

  14. F.J. Vernimmen, J.K. Harris, J.A. Wilson, et al., Stereotactic proton beam therapy of skull base meningiomas. Int. J. Radiat. Oncol. Biol. Phys. 49, 99–105 (2001)

    Article  Google Scholar 

  15. D.C. Weber, A.J. Lomax, H.P. Rutz, et al., Spot-scanning proton radiation therapy for recurrent, residual or untreated intracranial meningiomas. Radiother. Oncol. 71, 251–258 (2004)

    Article  Google Scholar 

  16. E. Wenkel, A.F. Thornton, D. Finkelstein, et al., Benign meningioma: partially resected, biopsied, and recurrent intracranial tumors treated with combined proton and photon radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 48, 1363–1370 (2000)

    Article  Google Scholar 

  17. S.E. Combs, C. Hartmann, A. Nikoghosyan, et al., Carbon ion radiation therapy for high-risk meningiomas. Radiother. Oncol. 95, 54–59 (2010)

    Article  Google Scholar 

  18. S.E. Combs, L. Edler, I. Burkholder, et al., Treatment of patients with atypical meningiomas Simpson grade 4 and 5 with a carbon ion boost in combination with postoperative photon radiotherapy: The MARCIE Trial. BMC Cancer 10, 615 (2010)

    Article  Google Scholar 

  19. K. Okuda, Y. Nakanuma, M. Miyazaki, Cholangiocarcinoma: recent progress. Part 1: epidemiology and etiology. J. Gastroenterol. Hepatol. 17, 1049–1055 (2002)

    Google Scholar 

  20. D.M. Parkin, F. Bray, J. Ferlay, P. Pisani, Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94, 153–156 (2001)

    Article  Google Scholar 

  21. D.M. Parkin, F. Bray, J. Ferlay, P. Pisani, Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005)

    Article  Google Scholar 

  22. J.M. Llovet, A. Burroughs, J. Bruix, Hepatocellular carcinoma. Lancet 362, 1907–1917 (2003)

    Article  Google Scholar 

  23. J.M. Llovet, J. Bruix, Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology 37, 429–442 (2003)

    Article  Google Scholar 

  24. P.M. Lopez, A. Villanueva, J.M. Llovet, Systematic review: evidence-based management of hepatocellular carcinoma – an updated analysis of randomized controlled trials. Aliment Pharmacol. Ther. 23, 1535–1547 (2006)

    Article  Google Scholar 

  25. A. Asnacios, L. Fartoux, O. Romano, et al., Gemcitabine plus oxaliplatin (GEMOX) combined with cetuximab in patients with progressive advanced stage hepatocellular carcinoma: results of a multicenter phase 2 study. Cancer 112, 2733–2739 (2008)

    Article  Google Scholar 

  26. J.M. Llovet, S. Ricci, V. Mazzaferro, et al., Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008)

    Article  Google Scholar 

  27. A.L. Cheng, Y.K. Kang, Z. Chen, et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10, 25–34 (2009)

    Article  Google Scholar 

  28. T.S. Lawrence, R.K. Ten Haken, M.L. Kessler, et al., The use of 3-D dose volume analysis to predict radiation hepatitis. Int. J. Radiat. Oncol. Biol. Phys. 23, 781–788 (1992)

    Article  Google Scholar 

  29. J.M. Robertson, T.S. Lawrence, L.M. Dworzanin, et al., Treatment of primary hepatobiliary cancers with conformal radiation therapy and regional chemotherapy. J. Clin. Oncol. 11, 1286–1293 (1993)

    Google Scholar 

  30. J.M. Robertson, T.S. Lawrence, J.C. Andrews, et al., Long-term results of hepatic artery fluorodeoxyuridine and conformal radiation therapy for primary hepatobiliary cancers. Int. J. Radiat. Oncol. Biol. Phys. 37, 325–330 (1997)

    Article  Google Scholar 

  31. H.C. Park, J. Seong, K.H. Han, et al., Dose-response relationship in local radiotherapy for hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 54, 150–155 (2002)

    Article  Google Scholar 

  32. L.A. Dawson, C.J. McGinn, D. Normolle, et al., Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J. Clin. Oncol. 18, 2210–2218 (2000)

    Google Scholar 

  33. H.C. Park, J. Seong, K.H. Han, et al., Dose-response relationship in local radiotherapy for hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 54, 150–155 (2002)

    Article  Google Scholar 

  34. H. Blomgren, I. Lax, I. Naslund, R. Svanstrom, Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol. 34, 861–870 (1995)

    Google Scholar 

  35. K.K. Herfarth, J. Debus, F. Lohr et al., Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int. J. Radiat. Oncol. Biol. Phys. 46, 329–335 (2000)

    Article  Google Scholar 

  36. J. Wulf, U. Hadinger, U. Oppitz, et al., Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother. Oncol. 57, 225–236 (2000)

    Article  Google Scholar 

  37. R. Timmerman, L. Papiez, M. Suntharalingam, Extracranial stereotactic radiation delivery: expansion of technology beyond the brain. Technol. Cancer Res. Treat. 2, 153–160 (2003)

    Google Scholar 

  38. L. Gong, X. Jin, Q. Li, J. Liu, L. An, Heavy ion beams induce survivin expression in human hepatoma SMMC-7721 cells more effectively than X-rays. Acta Biochim. Biophys. Sin. (Shanghai) 39, 575–582 (2007)

    Article  Google Scholar 

  39. X.D. Jin, L. Gong, C.L. Guo, et al., Survivin expressions in human hepatoma HepG2 cells exposed to ionizing radiation of different LET. Radiat. Environ. Biophys. 47, 399–404 (2008)

    Article  Google Scholar 

  40. H. Kato, H. Tsujii, T. Miyamoto, et al., Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis. Int. J. Radiat. Oncol. Biol. Phys. 59, 1468–1476 (2004)

    Article  Google Scholar 

  41. M. Hata, K. Tokuuye, S. Sugahara, et al., Proton beam therapy for hepatocellular carcinoma with limited treatment options. Cancer 107, 591–598 (2006)

    Article  Google Scholar 

  42. M. Hata, K. Tokuuye, S. Sugahara, et al., Proton beam therapy for hepatocellular carcinoma with portal vein tumor thrombus. Cancer 104, 794–801 (2005)

    Article  Google Scholar 

  43. M. Hata, K. Tokuuye, S. Sugahara, et al., Proton beam therapy for hepatocellular carcinoma patients with severe cirrhosis. Strahlenther Onkol. 182, 713–720 (2006)

    Article  Google Scholar 

  44. M. Hata, K. Tokuuye, S. Sugahara, et al., Proton beam therapy for aged patients with hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 69, 805–812 (2007)

    Article  Google Scholar 

  45. H. Imada, H. Kato, S. Yasuda, et al., Comparison of efficacy and toxicity of short-course carbon ion radiotherapy for hepatocellular carcinoma depending on their proximity to the porta hepatis. Radiother. Oncol. 96, 231–235 (2010)

    Article  Google Scholar 

  46. H. Tsujii, J.E. Mizoe, T. Kamada, et al., Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiother. Oncol. 73(Suppl 2), S41–S49 (2004)

    Article  Google Scholar 

  47. S.E. Combs, et al., Phase II study evaluating the treatment of patients with advanced hepatocellular carcinoma (HCC) with carbon ion radiotherapy: PROMETHEUS-01 Trial. BMC Cancer 11, 67 (2010)

    Article  Google Scholar 

  48. J.F. Fowler, The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol. 44, 265–276 (2005)

    Article  Google Scholar 

  49. K. Akakura, H. Tsujii, S. Morita, et al., Phase I/II clinical trials of carbon ion therapy for prostate cancer. Prostate 58, 252–258 (2004)

    Article  Google Scholar 

  50. H. Tsuji, T. Yanagi, H. Ishikawa, et al., Hypofractionated radiotherapy with carbon ion beams for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 63, 1153–1160 (2005)

    Article  Google Scholar 

  51. H. Ishikawa, H. Tsuji, T. Kamada, et al., Carbon ion radiation therapy for prostate cancer: results of a prospective phase II study. Radiother. Oncol. 81, 57–64 (2006)

    Article  Google Scholar 

  52. R.K. Wong, S. Berry, K. Spithoff, et al., Preoperative or postoperative therapy for stage II or III rectal cancer: an updated practice guideline. Clin. Oncol. (R. Coll. Radiol.) 22, 265–271 (2010)

    Google Scholar 

  53. R. Sauer, H. Becker, W. Hohenberger, et al., Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med. 351, 1731–1740 (2004)

    Article  Google Scholar 

  54. R.J. Heald, Total mesorectal excision (TME). Acta Chir. Iugosl. 47, 17–18 (2000)

    Google Scholar 

  55. E. Kapiteijn, E.K. Kranenbarg, W.H. Steup, et al., Total mesorectal excision (TME) with or without preoperative radiotherapy in the treatment of primary rectal cancer. Prospective randomised trial with standard operative and histopathological techniques. Dutch ColoRectal Cancer Group. Eur. J. Surg. 165, 410–420 (1999)

    Google Scholar 

  56. K.C. Peeters, C.A. Marijnen, I.D. Nagtegaal, et al., The TME trial after a median follow-up of 6 years: increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann. Surg. 246, 693–701 (2007)

    Article  Google Scholar 

  57. S. Yamada, M. Shinoto, Y. Shigeo, et al, [Current status and perspective of heavy ion beam therapy for patients with pelvic recurrence after primarily resected rectal cancer]. Gan To Kagaku Ryoho 36, 1263–1266 (2009)

    Google Scholar 

  58. S.E. Combs, et al., Phase I/II trial evaluating carbon ion radiotherapy for the treatment of recurrent rectal cancer. PANDORA-01-Trial. BMC Cancer (2010)

    Google Scholar 

  59. Y. Shioyama, K. Tokuuye, T. Okumura, et al., Clinical evaluation of proton radiotherapy for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 56, 7–13 (2003)

    Article  Google Scholar 

  60. T. Miyamoto, N. Yamamoto, H. Nishimura, et al., Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother. Oncol. 66, 127–140 (2003)

    Article  Google Scholar 

  61. T. Miyamoto, M. Baba, N. Yamamoto, et al., Curative treatment of Stage I non-small-cell lung cancer with carbon ion beams using a hypofractionated regimen. Int. J. Radiat. Oncol. Biol. Phys. 67, 750–758 (2007)

    Article  Google Scholar 

  62. T. Sugane, M. Baba, R. Imai, et al., Carbon ion radiotherapy for elderly patients 80 years and older with stage I non-small cell lung cancer. Lung Cancer 64, 45–50 (2009)

    Article  Google Scholar 

  63. C. Bert, A. Gemmel, N. Saito, et al., Dosimetric precision of an ion beam tracking system. Radiat. Oncol. 5, 61 (2010)

    Article  Google Scholar 

  64. C. Bert, A. Gemmel, N. Saito, E. Rietzel, Gated irradiation with scanned particle beams. Int. J. Radiat. Oncol. Biol. Phys. 73, 1270–1275 (2009)

    Article  Google Scholar 

  65. C. Bert, S.O. Grözinger, E. Rietzel, Quantification of interplay effects of scanned particle beams and moving targets. Phys. Med. Biol. 53, 2253–2265 (2008)

    Article  Google Scholar 

  66. C. Bert, N. Saito, A. Schmidt, et al., Target motion tracking with a scanned particle beam. Med. Phys. 34, 4768–4771 (2007)

    Article  Google Scholar 

  67. C. Bert, E. Rietzel, 4D treatment planning for scanned ion beams. Radiat. Oncol. 2, 24 (2007)

    Article  Google Scholar 

  68. E. Rietzel, C. Bert, Respiratory motion management in particle therapy. Med. Phys. 37, 449–460 (2010)

    Article  Google Scholar 

  69. P. Pommier, N.J. Liebsch, D.G. Deschler, et al., Proton beam radiation therapy for skull base adenoid cystic carcinoma. Arch. Otolaryngol. Head Neck Surg. 132, 1242–1249 (2006)

    Article  Google Scholar 

  70. B.L. Ramaekers, M. Pijls-Johannesma, M.A. Joore, et al., Systematic review and meta-analysis of radiotherapy in various head and neck cancers: Comparing photons, carbon-ions and protons. Cancer Treat. Rev. 37, 185–201 (2011)

    Article  Google Scholar 

  71. M.T. Truong, U.R. Kamat, N.J. Liebsch, et al., Proton radiation therapy for primary sphenoid sinus malignancies: treatment outcome and prognostic factors. Head Neck 31, 1297–1308 (2009)

    Article  Google Scholar 

  72. J.E. Mizoe, H. Tsujii, T. Kamada, et al., Dose escalation study of carbon ion radiotherapy for locally advanced head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 60, 358–364 (2004)

    Article  Google Scholar 

  73. D. Schulz-Ertner, A. Nikoghosyan, B. Didinger, et al., Therapy strategies for locally advanced adenoid cystic carcinomas using modern radiation therapy techniques. Cancer 104, 338–344 (2005)

    Article  Google Scholar 

  74. T. Kamada, H. Tsujii, H. Tsuji, et al., Efficacy and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. J. Clin. Oncol. 20, 4466–4471 (2002)

    Article  Google Scholar 

  75. R. Imai, T. Kamada, H. Tsuji, et al., Carbon ion radiotherapy for unresectable sacral chordomas. Clin. Cancer Res. 10, 5741–5746 (2004)

    Article  Google Scholar 

  76. L. Park, T.F. Delaney, N.J. Liebsch, et al., Sacral chordomas: Impact of high-dose proton/photon-beam radiation therapy combined with or without surgery for primary versus recurrent tumor. Int. J. Radiat. Oncol. Biol. Phys. 65, 1514–1521 (2006)

    Article  Google Scholar 

  77. R. Schoenthaler, J.R. Castro, P.L. Petti, K. Baken-Brown, T.L. Phillips, Charged particle irradiation of sacral chordomas. Int. J. Radiat. Oncol. Biol. Phys. 26, 291–298 (1993)

    Article  Google Scholar 

  78. C. Blattmann, S. Oertel, D. Schulz-Ertner, et al., Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma. BMC Cancer 10, 96 (2010)

    Article  Google Scholar 

  79. P.J. Eifel, K. Winter, M. Morris, et al., Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90–01. J. Clin. Oncol. 22, 872–880 (2004)

    Article  Google Scholar 

  80. M. Morris, P.J. Eifel, J. Lu, et al., Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N. Engl. J. Med. 340, 1137–1143 (1999)

    Article  Google Scholar 

  81. K. Matsushita, T. Ochiai, H. Shimada, et al., The effects of carbon ion irradiation revealed by excised perforated intestines as a late morbidity for uterine cancer treatment. Surg. Today 36, 692–700 (2006)

    Article  Google Scholar 

  82. S.E. Combs, A. Kalbe, A. Nikoghosyan, et al., Carbon ion radiotherapy performed as re-irradiation using active beam delivery in patients with tumors of the brain, skull base and sacral region. Radiother. Oncol. 98, 63–67 (2011)

    Article  Google Scholar 

  83. S.E. Combs, A. Nikoghosyan, O. Jaekel, et al., Carbon ion radiotherapy for pediatric patients and young adults treated for tumors of the skull base. Cancer 115, 1348–1355 (2009)

    Article  Google Scholar 

  84. D. Schulz-Ertner, C.P. Karger, A. Feuerhake, et al., Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int. J. Radiat. Oncol. Biol. Phys. 68, 449–457 (2007)

    Article  Google Scholar 

  85. D. Schulz-Ertner, A. Nikoghosyan, H. Hof, et al., Carbon ion radiotherapy of skull base chondrosarcomas. Int. J. Radiat. Oncol. Biol. Phys. 67, 171–177 (2007)

    Article  Google Scholar 

  86. T. Elsässer, M. Krämer, M. Scholz, Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 71, 866–872 (2008)

    Article  Google Scholar 

  87. T. Elsässer, M. Scholz, Improvement of the local effect model (LEM) – implications of clustered DNA damage. Radiat. Prot. Dosim. 122, 475–477 (2006)

    Article  Google Scholar 

  88. M. Scholz, N. Matsufuji, T. Kanai, Test of the local effect model using clinical data: tumour control probability for lung tumours after treatment with carbon ion beams. Radiat. Prot. Dosim. 122, 478–479 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie E. Combs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Combs, S.E. (2012). Clinical Indications for Carbon Ion Radiotherapy and Radiation Therapy with Other Heavier Ions. In: Linz, U. (eds) Ion Beam Therapy. Biological and Medical Physics, Biomedical Engineering, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21414-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21414-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21413-4

  • Online ISBN: 978-3-642-21414-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics