Skip to main content

The Role of Membrane Transport in the Detoxification and Accumulation of Zinc in Plants

  • Chapter
  • First Online:
Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

Zinc (Zn) is an essential micronutrient having various cellular functions. It is an important component of the functional structure of numerous enzymes and regulatory proteins. Zn is important in the functional regulation of enzymes and membrane transport systems as a messenger in intracellular signaling. However, in plants, excess Zn is toxic and causes chlorosis and growth disorders. Thus, to ensure Zn homeostasis, transporters act in coordination to mediate cellular import and export of Zn and distribution between cell organelles. The transport machinery responsible for uptake and export of Zn has been identified and its intracellular localization, such as the plasma and vacuolar membranes and the chloroplast envelope, has been studied. Uptake and export are required to ensure that Zn reaches its target proteins and also for detoxification or sequestration of Zn in the cell. Transporters implicated in Zn transport include members of the metal tolerance protein (MTP), ZRT1/IRT1-like protein (ZIP), and heavy metal ATPase (HMA) families. Their roles in the acquisition, distribution, homeostasis, and signaling of Zn are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addepalli B, Hunt AG (2008) Ribonuclease activity is a common property of Arabidopsis CCCH-containing zinc-finger proteins. FEBS Lett 582:2577–2582

    Article  PubMed  CAS  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerrisl JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  • Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879

    Article  PubMed  CAS  Google Scholar 

  • Assunçao AGL, Herrero E, Lin YF et al (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA 107:10296–10301

    Article  PubMed  Google Scholar 

  • Azriel-Tamir H, Sharir H, Schwartz B, Hershfinkel M (2004) Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J Biol Chem 279:51804–51816

    Article  PubMed  CAS  Google Scholar 

  • Balasubrahmanyam A, Hunt AG (2008) Ribonuclease activity is a common property of Arabidopsis CCCH-containing zinc-finger proteins. FEBS Lett 582:2577–2582

    Article  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability, 2nd edn. Wiley, New York

    Google Scholar 

  • Beckett PHT, Davis RD (1977) Upper critical levels of toxic elements in plants. New Phytol 79:95–106

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cheng S, Sultana S, Goss DJ, Gallie DR (2008) Translation initiation factor 4B homodimerization, RNA binding, and interaction with poly(A)-binding protein are enhanced by zinc. J Biol Chem 283:36140–36153

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2010) Zn: a versatile player in plant cell biology. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Springer, Berlin

    Google Scholar 

  • Desbrosses-Fonrouge AG, Voigt K, Schroeder A, Arrivault S, Thomine S, Krämer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174

    Article  PubMed  CAS  Google Scholar 

  • Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85:53–570

    Article  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    Article  PubMed  CAS  Google Scholar 

  • Ellis CD, MacDiarmid CW, Eide DJ (2005) Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J Biol Chem 280:28811–28818

    Article  PubMed  CAS  Google Scholar 

  • Flinn BS (2008) Plant extracellular matrix metalloproteinases. Funct Plant Biol 35:1183–1193

    Article  CAS  Google Scholar 

  • Fukao Y, Ferjani A, Fujiwara M, Nishimori Y, Ohtsu I (2009) Identification of zinc-responsive proteins in the roots of Arabidopsis thaliana using a highly improved method of two-dimensional electrophoresis. Plant Cell Physiol 50:2234–2239

    Article  PubMed  CAS  Google Scholar 

  • Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP (2007) Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32:63–70

    Article  PubMed  CAS  Google Scholar 

  • Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Groeneveld P, Stouthamer AH, Westerhoff HV (2009) Super life: how and why “cell selection” leads to the fastest-growing eukaryote. FEBS J 276:254–270

    Article  PubMed  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  PubMed  CAS  Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57:1116–1127

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396

    Article  PubMed  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719

    Article  PubMed  CAS  Google Scholar 

  • Hou S, Vigeland LE, Zhang G et al (2010) Zn2+ activates large conductance Ca2+-activated K+ channels via an intracellular domain. J Biol Chem 285:6434–6442

    Article  PubMed  CAS  Google Scholar 

  • Kang HW, Vitko I, Lee SS, Perez-Reyes E, Lee JH (2010) Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels. J Biol Chem 285:3271–3281

    Article  PubMed  CAS  Google Scholar 

  • Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283:8374–8383

    Article  PubMed  CAS  Google Scholar 

  • Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M (2009) A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol 50:1156–1170

    Article  PubMed  CAS  Google Scholar 

  • Kim Y-Y, Choi H, Segami S et al (2009) AtHMA1 contributes to detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753

    Article  PubMed  CAS  Google Scholar 

  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758

    Article  PubMed  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  Google Scholar 

  • Lilsjas A, Hikansson K, Jonsson BH, Xue Y (1994) Inhibition and catalysis of carbonic anhydrase-recent crystallographic analyses. Eur J Biochem 219:1–10

    Article  Google Scholar 

  • Lin YF, Liang HM, Yang SY et al (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392–404

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Chai J, Fu D (2009) Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Biol 16:1063–1067

    Article  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus E (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Mazar C, Bourque S, Mithofer A, Pugin A, Ranjeva R (2009) Calcium homeostasis in plant cell nuclei. New Phytol 181:261–274

    Article  Google Scholar 

  • Mendoza-Cozatl DG, Zhai Z, Jobe TO et al (2010) Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 285:40416–40426

    Article  PubMed  CAS  Google Scholar 

  • Mills RF, Valdes B, Duke M et al (2010) Functional significance of AtHMA4 C-terminal domain in planta. PLoS One 5:e13388

    Article  PubMed  Google Scholar 

  • Monnet F, Vaillant N, Hitmi A, Sallanon H (2005) Photosynthetic activity of Lolium perenne as a function of endophyte status and zinc nutrition. Funct Plant Biol 32:121–139

    Article  Google Scholar 

  • Morel M, Crouzet J, Gravot A et al (2009) AtHMA3, a P-1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  PubMed  CAS  Google Scholar 

  • Ohana E, Hoch E, Keasar C, Kambe T et al (2009) Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem 284:17677–17686

    Article  PubMed  CAS  Google Scholar 

  • Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  PubMed  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–339

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE et al (2008) Zinc biofortification of cereals; problems and solutions. Trends Plant Sci 13:464–473

    Article  PubMed  CAS  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA 97:12356–12360

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Bravot A, Auroy P et al (2006) HMA1, anew Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892

    Article  PubMed  CAS  Google Scholar 

  • Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    Article  PubMed  CAS  Google Scholar 

  • Shahzad Z, Gostil F, Ferot H et al (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6:e1000911

    Article  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  PubMed  CAS  Google Scholar 

  • Smolders and Degryse (2002) Fate and effect of zinc from tire debris in soil. Environ Sci Technol 36:3706–3710

    Article  Google Scholar 

  • Song WY, Choi KS, Kim DY et al (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252

    Article  PubMed  CAS  Google Scholar 

  • Strang C, Kunjilwar K, DeRubeis D, Peterson D, Pfaffinger PJ (2003) The role of Zn2+ in Shal voltage-gated potassium channel formation. J Biol Chem 278:31361–31371

    Article  PubMed  CAS  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  PubMed  CAS  Google Scholar 

  • Ueno D, Yamaji N, Kono I et al (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    Article  PubMed  CAS  Google Scholar 

  • van de Mortel JE, Villanueva LA, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  Google Scholar 

  • Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1992) Computer, simulated evaluation of possible mechanisms for metal ion activity in plant vacuoles: II. Zinc. Plant Physiol 99:621–626

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki S, Sakata-Sagawa K, Hasegawa A et al (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Maeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawachi, M., Kobae, Y., Tomioka, R., Maeshima, M. (2011). The Role of Membrane Transport in the Detoxification and Accumulation of Zinc in Plants. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_7

Download citation

Publish with us

Policies and ethics