Skip to main content

Plants in Heavy Metal Soils

  • Chapter
  • First Online:
Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

Few plant species, however, of different taxonomic affiliations, can grow on heavy metal soils. The adaptations of these metallophytes to the adverse conditions of heavy metal soils differ from one plant species to the next. Toxicity of heavy metals to plant cell constituents and responses of plant cells to cope with excess of heavy metals is described in this chapter. Current research on heavy metal tolerance and hyperaccumulation of plants focuses on the two model species Cardaminopsis (Arabidopsis) halleri and Thlaspi caerulescens. On the molecular level, heavy metal tolerance of plants might have arisen by gene duplications and modified regulations of their expressions rather than the development of new genes generated by extensive sequence alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaensen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284

    PubMed  CAS  Google Scholar 

  • Alford EA, Pilon-Smits EAH, Paschke MW (2010) Metallophytes – a view from the rhizosphere. Plant Soil 337:33–50

    CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the responses of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    PubMed  CAS  Google Scholar 

  • Bechsgaard JS, Castric V, Charlesworth D, Vekemans X, Schierup MH (2006) The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myrs. Mol Biol Evol 23:1741–1750

    PubMed  CAS  Google Scholar 

  • Becker T, Dierschke T (2008) Vegetation response to high concentrations of heavy metals in the Harz Mountains. Phytocoenologia 38:255–265

    Google Scholar 

  • Benabdellah K, Azcon-Aguilar G, Valderas A, Speziga D, Fitzpatrick TB, Ferrol N (2009) GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 184:682–693

    PubMed  CAS  Google Scholar 

  • Bert V, Macnair MR, DeLaguérie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations in Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233

    CAS  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, De Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    CAS  Google Scholar 

  • Boominathan R, Saha-Chaudhury NM, Sahajwall V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioeng 86:243–250

    PubMed  CAS  Google Scholar 

  • Bothe H, Regvar M, Turnau K (2010) Arbuscular mycorrhiza, heavy metal and salt tolerance. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Heidelberg, pp 87–111

    Google Scholar 

  • Bradshaw AD (1952) Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature 169:1098

    PubMed  CAS  Google Scholar 

  • Broadley MR, White P, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    PubMed  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CABI Publishing, Wallingford

    Google Scholar 

  • Brooks RR, Yang X-H (1984) Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe, and their significance as controlling factors for the flora. Taxon 33:392–399

    Google Scholar 

  • Chipeng FK et al (2010) Copper tolerance in the cuprophyte Haumaniastrum katagense (S. Moore) PA Duvign Plancke. Plant Soil 328:235–244

    CAS  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is upregulated of foliar methallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802

    PubMed  CAS  Google Scholar 

  • Cyranowski D (2001) Almost human. Nature 418:910–912

    Google Scholar 

  • Dai QL, Huang BF, Yang ZY, Yuan JG, Yang JZ (2010) Identification of cadmium-induced genes in maize seedlings by suppression subtractive hybridization. Front Environ Sci Eng China 4:449–458

    CAS  Google Scholar 

  • De Mars BG, Boerner REJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189

    Google Scholar 

  • Desbrosses-Fonrouge AG, Voigt K, Schröder A, Arrivault S, Thomine S, Krämer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf accumulation. FEBS Lett 570:4165–4174

    Google Scholar 

  • Drazic G, Mihaillovic N (2009) Salicylic acid modulates accumulation of Cd in seedlings of Cd-tolerant and Cd-susceptible soybean genotypes. Arch Biol Sci 61:431–439

    Google Scholar 

  • Elstner EF (1990) Der Sauerstoff, Biochemie, Biologie. Medizin. BI-Wissenschaftsverlag, Mannheim, Wien, Zürich

    Google Scholar 

  • Ernst WHO (1974) Schwermetallvegetation der Erde. Gustav Fischer, Stuttgart

    Google Scholar 

  • Ernst WHO (1982) Schwermetallpflanzen. In: Kinzel H (ed) Pflanzenökologie und Mineral-Stoffwechsel. Ulmer, Stuttgart, pp 472–506

    Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes – options and impossibilities. Chem Erde – Geochem 65:29–42

    CAS  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

    PubMed  CAS  Google Scholar 

  • Filatov V, Dowdle J, Smirnoff N, Ford-Lloyd B, Newbury HJ, Macnair MR (2007) A quantitative trait loci analysis of Zn hyperaccumulation in Arabidopsis halleri. New Phytol 174:580–590

    PubMed  CAS  Google Scholar 

  • Frérot H et al (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL × environment interactions. New Phytol 187:355–367

    PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    PubMed  CAS  Google Scholar 

  • Hanikenne M et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396

    PubMed  CAS  Google Scholar 

  • Hassinen VH, Tuomainen M, Peraniemi S, Schat H, Karenlamp SO, Tervahauta AL (2009) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 60:187–196

    PubMed  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonisation by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Hildebrandt U et al (2006) The rare endemic zinc violets of Central Europe originate from Viola lutea Huds. Plant Syst Evol 257:205–222

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    PubMed  CAS  Google Scholar 

  • Humphreys MO, Nicholls MK (1984) Relationship between tolerance to heavy metals in Agrostis-capillaris L. (Agrostis-tenuis Sibth). New Phytol 98:177–190

    Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    PubMed  CAS  Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sibertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    PubMed  Google Scholar 

  • Jedrzejczyk M, Rostanski A, Malkowski E (2002) Accumulation of zinc and lead in selected taxa from genus Viola L. Acta Biologica Cracoviensia Series Botanica 44:49–55

    Google Scholar 

  • Kaldorf MO, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    CAS  Google Scholar 

  • Kinzel H, Weber M (1982) Serpentin-Pflanzen. In: Kinzel H (ed) Pflanzenökologie und Mineral-Stoffwechsel. Ulmer, Stuttgart, pp 381–410

    Google Scholar 

  • Klingner A, Bothe H, Wray V, Marner FJ (1995a) Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry 38:53–55

    CAS  Google Scholar 

  • Klingner A, Hundeshagen B, Kernebeck H, Bothe H (1995b) Localization of the yellow pigment formed in roots of gramineous plants colonized by arbuscular fungi. Protoplasma 185:50–57

    CAS  Google Scholar 

  • Koch MA, Matchinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Nat Acad Sci USA 104:6272–6277

    PubMed  CAS  Google Scholar 

  • Koch M, Mummenhoff K, Hurka H (1998) Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: evidence from genetic studies based on isoenzyme analysis. Biochem Syst Ecol 26:823–838

    CAS  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backor M (2010) Tolerance of Silene vulgaris to copper: population related comparison of selected physiological parameters. Environ Toxicol 25:581–592

    PubMed  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    PubMed  Google Scholar 

  • Krämer U, Coster-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Krämer U, Smith RD, Wenzel WW, Raskin I, Salt RD (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense. Plant Physiol 115:1641–1650

    PubMed  Google Scholar 

  • Lambinon J, Augier P (1964) La flore et la végétation des terrains calaminaires de la Wallonie septentrionale et de la Rhénanie axoise. Types chorologiques et groupes écologiques. Natura Monsana 16:113–130

    Google Scholar 

  • Li Y-M et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    CAS  Google Scholar 

  • Liao XY, Chen TB, Lei M, Huang ZC, Xiao XY, An ZZ (2004) Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils. Plant Soil 261:109–116

    CAS  Google Scholar 

  • Lucassen E, Van Kempen MML, Roelofs JGM, Van der Velde G (2010) Decline in metallophytes in tertiary polluted floodplain grassland in the Netherlands, experimental evidence for metal and nutritional changes in soil as driver factors. Chem Ecol 26:273–287

    CAS  Google Scholar 

  • Lüttge U (1975) Salt glands. In: Baker DA, Hall JL (eds) Ion transport in plant cells and tissues. North-Holland Publishing Comp, Amsterdam, Oxford, pp 335–376

    Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond B Biol Sci 266:2175–2179

    CAS  Google Scholar 

  • Maerques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 30:622–654

    Google Scholar 

  • Massa N, Andreucci F, Poli M, Aceto M, Barbato R, Berta G (2010) Screening for heavy metal accumulators amongst autochthonous plants in a polluted site in Italy. Ecotoxicol Environ Saf 73:1988–1997

    PubMed  CAS  Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–380

    PubMed  CAS  Google Scholar 

  • Meyer KF (2006) Kritische Revision der Thlaspi-Arten Europas, Afrikas und Vorderasiens. Spezieller Teil IX-Noccaea Moench. Haussknechtia Beiheft, Jena, p 343

    Google Scholar 

  • Meyer CL, Vitalis R, Saumitou-Laprade P, Castric V (2009) Genomic pattern of adaptive divergence in Arabidopsis halleri, a model species for tolerance to heavy metal. Mol Ecol 18:2050–2062

    PubMed  Google Scholar 

  • Meyer CL et al (2010) Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytol 185:130–142

    PubMed  CAS  Google Scholar 

  • Mikkelsen TS et al (2005) Initial sequences of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    CAS  Google Scholar 

  • Mills RF et al (2010) Functional significance of AtHMA4 C-terminal domain in planta. PLoS One 5(10):e13388

    PubMed  Google Scholar 

  • Muthukumar T, Bagyaraj DJ (2010) Use of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Proc Natl Acad Sci India Sect B Biol Sci 80:103–121

    CAS  Google Scholar 

  • Nauenburg JD (1986) Untersuchungen zur Variabilität, Ökologie und Systematik der Viola tricolor-Gruppe in Mitteleuropa, Thesis, The University of Göttingen, Germany, pp 126

    Google Scholar 

  • Noret N, Meerts P, Tolrà RP, Poschenrieder C, Barceló D, Escarré J (2005) Palatability of Thlaspi caerulescens for snails: influence of Zn and glucosinolates. New Phytol 165:763–773

    PubMed  CAS  Google Scholar 

  • Noret N, Josens G, Escarré J, Lefébvre C, Panichelli S, Meerts P (2007) Development of Issoria lathonia (Lepidoptera: Nymphalidae) on zinc-accumulating and nonaccumulating Viola species (Violaceae). Environ Toxicol Chem 26:565–571

    PubMed  CAS  Google Scholar 

  • OrÅ‚owska E, Zubek S, Jurkiewicz A, Szarek-Lukaszewska G, Turnau K (2002) Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160

    PubMed  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    PubMed  CAS  Google Scholar 

  • Patzke W, Brown G (1990) Festua aquisgranensis sp. nova ein neuer Vertreter der Kollektivart Festuca ovina L. Decheniana 143:194–195

    Google Scholar 

  • Pauwels M, Saumitou-Laprade P, Holl AC, Petit D, Bonnin I (2005) Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in central Europe: the cpDNA testimony. Mol Ecol 14:4403–4414

    PubMed  CAS  Google Scholar 

  • Pauwels M, Frérot H, Bonnin I, Saumitou-Laprade P (2006) A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae). J Evol Biol 19:1838–1850

    PubMed  CAS  Google Scholar 

  • Pence NS et al (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Nat Acad Sci USA 97:4956–4960

    PubMed  CAS  Google Scholar 

  • Perez-Figueroa A, Garcia-Pereira MJ, Saura M, Rolan-Alvarez E, Caballero A (2010) Comparing three different methods detect selective loci using dominant markers. J Evol Biol 23:2267–2276

    PubMed  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    PubMed  CAS  Google Scholar 

  • Prasad MNV, Hagemeyer J (eds) (1999) Heavy metal stress in plants – from molecules to ecosystems. Springer, Heidelberg

    Google Scholar 

  • Ramirez-Rodriguez V, Lopez-Bucio J, Herrera-Estrella L (2005) Adaptive responses in plants to nonoptimal soil pH. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress. Blackwell, Oxford, pp 145–170

    Google Scholar 

  • Regvar M et al (2003) Colonization of pennycresses Thlaspi sp. of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626

    PubMed  CAS  Google Scholar 

  • Robinson RH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285

    CAS  Google Scholar 

  • Roosens N, Willems G, Gode C, Courseaux A, Saumitou-Laprade P (2008) The use of comparative genome analysis and systemic relationships allows extrapolating the position of Zn tolerance QTL regions from Arabidopsis halleri into Arabidopsis thaliana. Plant Soil 306:105–116

    CAS  Google Scholar 

  • Rozema J, Gude H, Pollak G (1981) An ecophysiological study of the salt excretion of four halophytes. New Phytol 89:201–207

    CAS  Google Scholar 

  • Salt D (2001) Responses and adaptations of plants to metal stress. In: Hawkesford MJ, Buchner P (eds) Molecular analysis of plant adaptation to the environment. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Salt DE, Smith RD, Raskin RD (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    PubMed  CAS  Google Scholar 

  • Schat H, Tenbookum VM (1992) Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229

    CAS  Google Scholar 

  • Schat H, Vooijs R (1997) Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: co-segregation analysis. New Phytol 136:489–496

    CAS  Google Scholar 

  • Schat H, Kuiper E, TenBookum WM, Vooijs R (1993) A general model for the genetic control of copper tolerance in Silene vulgaris: evidence from crosses between plants from different tolerant populations. Heredity 70:142–147

    CAS  Google Scholar 

  • Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh H (2004) Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma 223:183–189

    PubMed  CAS  Google Scholar 

  • Schwickerath M (1944) Das Hohe Venn und seine Randgebiete. Gustav Fischer, Jena

    Google Scholar 

  • Shahzad Z et al (2010) The five AhMTP1 Zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6(4):e1000911

    PubMed  Google Scholar 

  • Slomka A et al (2011) Violets of the section Melanium, their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps. J Plant Physiol 168:1191–1199

    Google Scholar 

  • Smith SE, Macnair MR (1998) Hypostatic modifiers cause variations in degree of copper tolerance in Mimulus guttatus. Heredity 80:760–768

    CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang X-R, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    PubMed  CAS  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Strczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    CAS  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    PubMed  Google Scholar 

  • Turnau K, Ostachowicz B, Wojtczak G, Anielska T, Sobczyk L (2010) Metal uptake by xerothermic plants introduced into Zn-Pb industrial wastes. Plant Soil 337:299–311

    CAS  Google Scholar 

  • Van de Mortel JE et al (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Thlaspi caerulescens. Plant Cell Environ 31:301–324

    PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    PubMed  CAS  Google Scholar 

  • Vogel-MikuÅ¡ K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonization of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    PubMed  Google Scholar 

  • Weissenhorn I, Leyval C (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157:247–256

    CAS  Google Scholar 

  • Westhoff A (1999) Mycorrhizal plants for phytoremediation of soils contaminated with radionuclides. Restor Reclam Rev (Student On-line Journal) 5(4)

    Google Scholar 

  • Willems G, Drager DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae) An analysis of quantitative trait loci. Genetics 176:659–674

    PubMed  CAS  Google Scholar 

  • Willems G, Frérot H, Gennen J, Salis P, Saumitou-Laprade P (2010) Quantitative trait loci analysis of mineral element concentration in an Arabidopsis halleri × Arabidopsis lyrata petraea F2-progeny grown on cadmium-contaminated soil. New Phytol 187:368–379

    PubMed  CAS  Google Scholar 

  • Wu L, Bradshaw AD, Thurman DA (1975) Potential for evolution of heavy-metal tolerance in plants. 3. Rapid evolution of the copper tolerance in Agrostis stolonifera. Heredity 34:165–172

    Google Scholar 

  • Wu CA, Liao B, Wang SL, Zhang J, Li JT (2010) Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis). Int J Phytoremediation 12:574–585

    PubMed  CAS  Google Scholar 

  • Zelko I, Lux A, Czibula K (2008) Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense. Int J Environ Pollut 33:123–132

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Bothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bothe, H. (2011). Plants in Heavy Metal Soils. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_2

Download citation

Publish with us

Policies and ethics