Skip to main content

Microbial Remediation of Arsenic Contaminated Soil

  • Chapter
  • First Online:
Book cover Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

Arsenic (As) contamination in terrestrial and aquatic ecosystems is a very sensitive environmental issue due to its adverse impact on human health. Therefore, remediation of arsenic contaminated soil is extremely important. Bioremediation with special reference to microbial approaches hold promise to clean up the legacy of arsenic contaminated soils. Among microbial approaches, oxidation, reduction, and biomethylation are the major transformation processes which have direct implications on amelioration of arsenic contaminated soils. Besides these, biofilm, biosorption, and siderophore-based amelioration approaches are also promising. However, microbially enhanced phytoextractions with special reference to establishments of mycorrhizal fungi in rhizosphere of arsenic hyperaccumulating Chinese Brake Fern (Pteris vittata L.) hold promise. The use of engineered microbes as selective biosorbents is an attractive green cure technology for the low cost and efficient removal of arsenic from soil. Most of the studies are concentrated in laboratory and this should be tested in the field before its further implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Cresser MS, Meharg A, Feldmann J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36:962–968

    PubMed  CAS  Google Scholar 

  • Abernathy CO, Lui YP, Longfellow D, Aposhian HV, Beck B, Fowler B et al (1999) Arsenic health effects, mechanisms of actions and research issues. Environ Health Perspect 107:593–597

    PubMed  CAS  Google Scholar 

  • Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram negative bacteria present in Ni-rich serpentine soil and the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    PubMed  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York

    Google Scholar 

  • Ahmad S, Kitchin KT, Cullen WR (2000) Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch Biochem Biophys 382:195–202

    PubMed  CAS  Google Scholar 

  • Ahmed KM, Huq SMI, Naidu R (2006) Extent and severity of arsenic poisoning in Bangladesh. In: Naidu R, Smit E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO Publishing, Collingwood, pp 525–554

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. New York, John Wiley and Sons, Inc

    Google Scholar 

  • Al Rmalli SW, Haris PI, Harrington CF, Ayub M (2005) A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Sci Total Environ 337:23–30

    PubMed  CAS  Google Scholar 

  • Arena JM, Drew RH (1986) Poisoning: toxicology, symptoms, treatments, 5th edn. Charles C. Thomas, Springfield, IL7

    Google Scholar 

  • Armstrong W (1964) Oxygen diffusion from the roots of some British bog plants. Nature 204:801–802

    CAS  Google Scholar 

  • Arora A, Saxena S (2005) Cultivation of Azolla microphylla biomass on secondary treated Delhi municipal effluents. Biomass Bioenerg 29:60–64

    CAS  Google Scholar 

  • Arriagada CA, Herrera MA, Ocampo JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globules co-cultured with Glycine max in soil contaminated with heavy metals. J Environ Manage 84:93–99

    PubMed  CAS  Google Scholar 

  • Ashley PM, Lottermoser BG (1999) Arsenic contamination at the Mole River Mine, northern New South Wales. Aust J Earth Sci 46:861–874

    CAS  Google Scholar 

  • ATSDR (1990) ATSDR case studies in environmental medicine. Agency for Toxic Substances and Disease Registry, Atlanta GA, USA

    Google Scholar 

  • Bachofen R, Birch L, Buchs FP, Flynn I, Gaudenz J, Tahedl H et al (1995) Volatilization of arsenic compounds by microorganisms. In: Hinche RE, Means JL, Burris DR (eds) Bioremediation of inorganics. Battelle Press, Columbus, pp 103–108

    Google Scholar 

  • BADC (2005) Survey report on irrigation equipment and irrigated area in Boro/2004 season. Bangladesh Agricultural Development Corporation, Dhaka

    Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524

    PubMed  CAS  Google Scholar 

  • Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338

    PubMed  CAS  Google Scholar 

  • Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146

    PubMed  CAS  Google Scholar 

  • Benson LM, Porter EK, Peterson PJ (1981) Arsenic accumulation, tolerance, and genotypic variation in plants on arsenical mine wastes in South-West England. J Plant Nutr 3:655–666

    CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    PubMed  CAS  Google Scholar 

  • Beretka J, Nelson P (1994) The current state of utilization of fly ash in Australia. In: Ash: a valuable resource, vol. 1. South African Coal Ash Association, pp 51–63

    Google Scholar 

  • BGS and DPHE (British Geological Survey and Department of Public Health Engineering) (2001) Arsenic contamination of groundwater in Bangladesh. Technical report WC/00/19. British Geological Survey, Keyworth, UK

    Google Scholar 

  • Bolan NS, Thiyagarajan S (2001) Retention and plant availability of chromium in soils as affected by lime and organic amendments. Aust J Soil Res 39:1091–1103

    CAS  Google Scholar 

  • Borgono JM, Vincent P, Venturino H, Infante A (1977) Arsenic in drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19:103–105

    PubMed  CAS  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654

    PubMed  CAS  Google Scholar 

  • Brochmoller J, Cascorbi I, Henning S, Meisel C, Roots I (2000) Molecular genetics of cancer susceptibility. Pharmacology 61:212–227

    Google Scholar 

  • Brouwere K, Smolders E, Merckx R (2004) Soil properties affecting solid-liquid distribution of As(V) in soils. Eur J Soil Sci 55:165–173

    Google Scholar 

  • Buchet JP, Lauwerys R (1983) Evaluation of exposure to inorganic arsenic in man. In: Fachetti S (ed) Analytical techniques for heavy metals in biological fluids. Elsevier, Amsterdam, pp 75–90

    Google Scholar 

  • Buchet JP, Lauwerys R, Roels H (1981) Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate or dimethylarsinate in man. Int Arch Occup Environ Health 48:71–79

    PubMed  CAS  Google Scholar 

  • Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126:157–167

    PubMed  CAS  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi YS, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    PubMed  CAS  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    PubMed  CAS  Google Scholar 

  • Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164

    PubMed  CAS  Google Scholar 

  • Cebrian ME, Albores A, Aguilar M, Blakely E (1983) Chronic arsenic poisoning in the North of Mexico. Hum Toxicol 2:121–133

    PubMed  CAS  Google Scholar 

  • Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    PubMed  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D et al (2002) Arsenic calamity in the Indian subcontinent-what lessons have been learned? Talanta 58:3–22

    PubMed  CAS  Google Scholar 

  • Chakraborty AK, Saha KC (1987) Arsenical dermatosis from tubewell water in West Bengal. Indian J Med Res 85:326–334

    PubMed  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–362

    CAS  Google Scholar 

  • Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour Technol 97:1503–1508

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Mukherjee A (1999) Hydrogeological investigation of ground water arsenic contamination in South Calcutta. Sci Total Environ 225:249–262

    PubMed  CAS  Google Scholar 

  • Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139

    PubMed  CAS  Google Scholar 

  • Chen H, Cutright T (2002) The interactive effects of chelator, fertilizer, and rhizobacteria for enhancing phytoremediation of heavy metal contaminated soil. J Soil Sediment 2:203–210

    CAS  Google Scholar 

  • Chen KP, Wu HY (1962) Epidemiologic studies on Blackfoot disease: II. A study of source of drinking water in relation to the disease. J Formos Med Assoc 61:611–618

    PubMed  CAS  Google Scholar 

  • Chen CJ, Kuo TL, Wu MM (1988) Arsenic and cancers. Lancet 1:414

    PubMed  CAS  Google Scholar 

  • Chen CJ, Hsueh YM, Lai MS, Shyu MP, Chen SY, Wu MM et al (1995) Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25:53–60

    PubMed  Google Scholar 

  • Chen BD, Zhu YG, Smith FA (2006) Effects of abuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62:1464–1473

    PubMed  CAS  Google Scholar 

  • Chen AQ, Hu J, Sun SB, Xu GH (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831

    PubMed  CAS  Google Scholar 

  • Chi IC, Blackwell RQ (1968) A controlled retrospective study of Blackfoot disease, an endemic peripheral gangrene disease in Taiwan. Am J Epidemiol 88:7–24

    CAS  Google Scholar 

  • Chirenje T, Ma LQ, Szulczewski M, Littell R, Portier KM, Zillioux E (2003) Arsenic distribution in Florida urban soils: comparison between Gainesville and Miami. J Environ Qual 32:109–119

    PubMed  CAS  Google Scholar 

  • Chopra BK, Bhat S, Mikheenko IP, Xu Z, Yang Y, Luo X, Chen H, van Zwietene L, McC Lilley R, Zhang R (2007) The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Sci Total Environ 378:331–342

    PubMed  CAS  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GK, Chanda CR, Lodh D, Saha KC, Mukherjee SC, Roy S, Kabir S, Ouamruzzaman Q, Chakraborty D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    PubMed  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron C (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    CAS  Google Scholar 

  • Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovley DR (1996) Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536

    PubMed  CAS  Google Scholar 

  • Correll R, Huq SMI, Smith E, Owens G, Naidu R (2006) Dietary intake of arsenic from crops. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO Publishing, Melbourne, pp 251–268

    Google Scholar 

  • Corsini A, Cavalca L, Crippa L, Zaccheo P, Andreoni V (2010) Impact of glucose on microbial community of a soil containing pyrite cinders: role of bacteria in arsenic mobilization under submerged condition. Soil Biol Biochem 42:699–707

    CAS  Google Scholar 

  • Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45:262–268

    Google Scholar 

  • Crameri A, Dawes G, Rodriguez E, Silver S, Stemmer WPC (1997) Molecular evolution of an arsenate detoxification pathway DNA shuffling. Nat Biotechnol 15:436

    PubMed  CAS  Google Scholar 

  • Cullen WR (1989) The metabolism of methylarsine oxide and sulfide. Appl Organometal Chem 3:71–78

    CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    CAS  Google Scholar 

  • Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729

    CAS  Google Scholar 

  • Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397

    PubMed  CAS  Google Scholar 

  • Das D, Samanta G, Mandal BK, Chowdhury TR, Chanda CR, Chowdhury PP et al (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health 18:5–15

    CAS  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    PubMed  CAS  Google Scholar 

  • Davies JA, Harrison JJ, Marques LL et al (2007) The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiol Ecol 59:32–46

    PubMed  CAS  Google Scholar 

  • Dent D (1986) Acid Sulphate Soils: A Baseline for Research and Development, International Institute for Land Reclamation and Improvement, Wageningen

    Google Scholar 

  • de Koning J, Thiesen S (2005) Aqua Solaris – an optimized small scale desalination system with 40 litres output per square meter based upon solar-thermal distillation. Desalination 182:503–509

    Google Scholar 

  • deLemos JL, Bostick BC, Renshaw CE, Sturup S, Feng XH (2006) Landfill-stimulated iron reduction and arsenic release at the Coakley Superfund Site (Nh). Environ Sci Technol 40:67–73

    PubMed  CAS  Google Scholar 

  • De Vitre AR, Belzile N, Tessier A (1991) Speciation and adsorption of arsenic on diagenetic iron oxyhrdroxides. Limnol Oceanog 36:1480–1485

    CAS  Google Scholar 

  • Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    PubMed  CAS  Google Scholar 

  • Dhar RK, Biswas BK, Samanta G, Mandal BK, Chakraborti D, Roy S et al (1997) Groundwater arsenic calamity in Bangladesh. Curr Sci 73:48–59

    CAS  Google Scholar 

  • Diels L, Spaans PH, Van Roy S et al (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71:235–241

    CAS  Google Scholar 

  • DPHE/BGS/MML (1999) Groundwater studies for arsenic contamination in Bangladesh. Phase I: rapid investigation phase. BGS/MML Technical report to Department for International Development, UK

    Google Scholar 

  • Duxbury JM, Panaullah G (2007) Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh. Working paper, Water Service, FAO, Rome

    Google Scholar 

  • Duxbury JM, Mayer AB, Lauren JG, Hassan N (2003) Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. J Environ Sci Health 38:61–69

    CAS  Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M, Merrington G, Singleton I (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217

    Google Scholar 

  • Eisler R (2004) Arsenic hazards to humans, plants, and animals from gold mining. Rev Environ Contam Toxicol 180:133–165

    PubMed  CAS  Google Scholar 

  • Ellenhorn MJ, Barceloux DG (1988) Arsenic in medical toxicology. Diagnosis and treatment of human poisoning. Elsevier, New York 7, pp 1012–1016

    Google Scholar 

  • Engel RR, Hopenhayn-Rich C, Receveur O, Smith AH (1994) Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev 16:184–209

    PubMed  CAS  Google Scholar 

  • European Topic Centre Soil (ETCS) (1998) Topic report: contaminated sites. European Environment Agency, Copenhagen, Denmark

    Google Scholar 

  • Feng L, Zheng Y-M, He J-Z (2009) Microbes influence the fractionation of arsenic in paddy soils with different fertilization regimes. Sci Total Environ 407:2631–2640

    Google Scholar 

  • Feng Z, Xia Y, Tian D, Wu K, Schmitt M, Kwok RK, et al. (2001) DNA damage in buccal epithelial cells from individuals chronically exposed to arsenic via drinking water in Inner Mongolia, China. Anticancer Res 21:51–58

    CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    PubMed  CAS  Google Scholar 

  • Foster AL (2003) Spectroscopic investigations of arsenic species in solid phases. In: Welsch AHSKG (ed) Arsenic in groundwater: geochemistry and occurrence. Kluwer Academic Publishers, Boston, pp 27–65

    Google Scholar 

  • Fowler BA (1977) Toxicology of environmental arsenic. In: Goyer RA, Mehlman MA (eds) Advances in modern toxicology: II. Toxicology of trace elements. Hemisphere Publishing, Washington, DC, pp 79–122

    Google Scholar 

  • Fowler BA, Weissberg JB (1974) Arsine poisoning. N Engl J Med 291(22):1171–1174

    PubMed  CAS  Google Scholar 

  • French CJ, Dickson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    PubMed  CAS  Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amando H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic dump. Appl Geochem 18:1267–1278

    CAS  Google Scholar 

  • Gadd GM (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    CAS  Google Scholar 

  • Gao S, Burau RG (1997) Environmental factors affecting rates of arsine evolution from and mineralization of arsenicals in soil. J Environ Qual 26:753–763

    CAS  Google Scholar 

  • Gebel T (2000) Confounding variables in the environmental toxicology of arsenic. Toxicology 144:155–162

    PubMed  CAS  Google Scholar 

  • Gibney BP, Nüsslein K (2007) Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments. Chemosphere 70:329–336

    PubMed  CAS  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862

    PubMed  CAS  Google Scholar 

  • Gochfeld M (1995) Chemical agents. In: Brooks S, Gochfeld M, Herzstein J et al (eds) Environmental medicine. Mosby, St. Louis, pp 592–614

    Google Scholar 

  • Gohre V, Paszkowaski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Gonzalez-Chavez, Harris PJ, Dodd J, Meharg AA (2004) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytologist 155:163-171

    Google Scholar 

  • Graeme HM, Pollack JVC (1998) Selected topics: toxicology: part I Arsenic and mercury. J Emerg Med 16:45–56

    PubMed  CAS  Google Scholar 

  • Grobe JW (1976) Perephere Durchblutungsstorungen und Akrocyanose bei arsengeschadigten Moselwintzern [Peripheral circulatory disorders and acrocyanosis in Moselle valley vineyard workers with arsenic poisoning]. Berufsdermatosen 24:78–84

    PubMed  CAS  Google Scholar 

  • Gurung JK, Ishiga H, Khadka MS (2005) Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environ Geol 49:98–113

    CAS  Google Scholar 

  • Haack EA, Warren LA (2003) Biofilm hydrous manganese oxyhydroxides and metal dynamics in acid rock drainage. Environ Sci Technol 37:4138–4147

    PubMed  CAS  Google Scholar 

  • Han FX, Su Y, Monts DL, Plodinec MJ, Banin A, Triplett GE (2003) Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 90:395–401

    PubMed  CAS  Google Scholar 

  • Hansel CM, Fendorf S, Sutton S, Newville M (2001) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technnol 35:3863–3868

    CAS  Google Scholar 

  • Harrison JJ, Ceri H, Roper NJ, Badry EA, Sproule KM, Turner RJ (2005) Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151:3181–3195

    PubMed  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    PubMed  CAS  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, YuW AMA et al (2005) Groundwater arsenic contamination on the Ganges delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. C R Geosci 337:285–296

    CAS  Google Scholar 

  • Hery M, Gault AG, Rowland HAL, Lear G, Polya DA, Lloyd JR (2008) Molecular and cultivation-dependent analysis of metal-reducing bacteria implicated in arsenic mobilisation in South-East Asian aquifers. Appl Geochem 23(11):3215–3223, Oxford: Elsevier Ltd

    CAS  Google Scholar 

  • Hietala KA, Roane TM (2009) Microbial metal remediation. In: Singh A, Kuhad RC, Ward OP (eds) Soil Biology: Advances in Applied Bioremediation. Springer-Verlag, pp 201–220

    Google Scholar 

  • Holmes DE, Finneran KT, O'Neil RA, Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306

    PubMed  CAS  Google Scholar 

  • Hossain MB (2005) Arsenic distribution in soil and water of a STW command area. CIMMYT/USGS Symposium on the Behaviour of Arsenic in Aquifers, Soils and Plants:Implications for Management, Dhaka, Jan. 16–18, 2005. Centro Internacional de Mejoramiento de Maíz y Trigo and the U.S. Geological Survey

    Google Scholar 

  • Hossain MF (2006) Arsenic contamination in Bangladesh – an overview. Agric Ecosyst Environ 113:1–16

    CAS  Google Scholar 

  • Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393

    PubMed  CAS  Google Scholar 

  • Hug SJ, Canonica L, Wegelin M, Gechter D, Von Gunten U (2001) Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environ Sci Technol 35:2114–2121

    PubMed  CAS  Google Scholar 

  • Huq SMI, Ara QAJ, Islam K, Zaher A, Naidu R (2001) The possible contamination from arsenic through food chain. In: Jacks G, Bhattacharya P, Khan AA (eds) Groundwater arsenic contamination in the Bengal Delta Plain of Bangladesh, KTH special publication, vol 3084. TRITA-AMI Report, Stockholm, Sweden, pp 91–96

    Google Scholar 

  • Huysmans KD, Frankenberger WT (1991) Evolution of trimethylarsine by a Penicillium sp. isolated from agricultural evaporation pond water. Sci Total Environ 105:13–28

    PubMed  CAS  Google Scholar 

  • Inskeep WP, McDermott TR, Fendorf S (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 183–215

    Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    PubMed  CAS  Google Scholar 

  • Jain CK, Ali I (2000) Arsenic: Occurrence, toxicity and speciation techniques. Water Res 34:4304–4312

    CAS  Google Scholar 

  • Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097

    PubMed  CAS  Google Scholar 

  • Jankong P, Visoottiviseth P, Khokiattiwong S (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68:1906–1912

    PubMed  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725

    PubMed  CAS  Google Scholar 

  • Karim M (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34:304–310

    CAS  Google Scholar 

  • Katsoyiannis A, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17–26

    PubMed  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2006) Use of iron- and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater. Water Qual Res J Can 41:117–129

    CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis H, Althoff H, Bartel H (2002) As(III) removal from ground waters using fixed-bed upflow bioreactors. Chemosphere 47:325–332

    PubMed  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI, Jekel M (2004) Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxides during groundwater treatment. Ind Eng Chem Res 43:486–493

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Bio 18:355–364

    CAS  Google Scholar 

  • Khan NI, Owens G, Bruce D, Naidu R (2009) An effective dietary survey framework for the assessment of total dietary arsenic intake in Bangladesh: Part-A—FFQ design. Environ Geochem Health 31:207–220

    PubMed  CAS  Google Scholar 

  • King DJ, Doronila AI, Feenstra C, Baker AJM, Woodrow IE (2008) Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Sci Total Environ 406:35–42

    PubMed  CAS  Google Scholar 

  • Kitchin KT (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172:249–261

    PubMed  CAS  Google Scholar 

  • Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    PubMed  CAS  Google Scholar 

  • Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136

    CAS  Google Scholar 

  • Leonard A (1991) Arsenic. In: Merian E (ed) Metals and their compounds in the environments: occurrence, analysis, and biological relevance, 2nd edn. VCH, Weinheim, pp 751–773

    Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8

    PubMed  CAS  Google Scholar 

  • Leupin OX, Hug SJ (2005) Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39:1729–1740

    PubMed  CAS  Google Scholar 

  • Levinsky WJ, Smalley RV, Hillyer PN, Shindler RL (1970) Arsine hemolysis. Arch Environ Health 20:436–440

    PubMed  CAS  Google Scholar 

  • Leyval C, Joner E (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press, New York, pp 165–185

    Google Scholar 

  • Leyval C, Turnan K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Li Y-x, Chen T-b (2005) Concentrations of addictive arsenic in Beijing pig feeds and the residues in pig manure. Resour Conserv Recy 45:356–367

    Google Scholar 

  • Li Y, Cockburn W, Kilpatrick J, Whitelam GC (2000) Cytoplasmic expression of a soluble synthetic mammalian metallothioneinalpha domain in Escherichia coli – enhanced tolerance and accumulation of cadmium. Mol Biotechnol 16:211–219

    PubMed  Google Scholar 

  • Lièvremont D, Philippe BN, Marie-Claire L (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237

    PubMed  Google Scholar 

  • Lin S, Cullen WR, Thomas DJ (1999) Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem Res Toxicol 12:924–930

    PubMed  CAS  Google Scholar 

  • Liu ZJ, Boles E, Rosen BP (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279:17312–17318

    PubMed  CAS  Google Scholar 

  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15:187–192

    PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    CAS  Google Scholar 

  • MacRae JD, Lavine IN, McCaffery KA, Ricupero K (2007) Isolation and characterization of NP4, an arsenate-reducing Sulfurospirillum from groundwater in Northport, Maine. J Environ Eng 131:81–88

    Google Scholar 

  • Macur PE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial population associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682

    PubMed  CAS  Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Cabrera F, Lopez R (2002) Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcollar mine spill (SW Spain). Sci Total Environ 290:105–120

    PubMed  CAS  Google Scholar 

  • McBride BC, Wolfe RS (1971) Biosynthesis of dimethylasrine by a methanobacterium. Biochemistry 10:4312–4317

    PubMed  CAS  Google Scholar 

  • McBride GL, Holland P, Wilson K (1998) Investigation of contaminated sheep dipping sites in the Waikato. In: Proceedings of waste management institute New Zealand conference. Waste Management Institute, New Zealand Inc., Rotorua, pp 129–137

    Google Scholar 

  • McLaren RG, Naidu R, Smith J, Tiller KG (1998) Fractionation and distribution of arsenic in soils contaminated by cattle dip. J Environ Qual 27:348–354

    CAS  Google Scholar 

  • McLaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) The behaviour and environmental impact of contaminants in fertilizers. Aust J Soil Res 34:1–54

    CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    CAS  Google Scholar 

  • Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol 116:29–35

    CAS  Google Scholar 

  • Meng MX, Korfiatis GP, Bang S, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Letters 133:103–111

    CAS  Google Scholar 

  • Merrifield ME, Ngu T, Stillman MJ (2004) Arsenic binding to Fucus vesiculosus metallothionein. Biochem Biophys Res Commun 324:127–132

    PubMed  CAS  Google Scholar 

  • Merry RH, Tiller KG, Alston AM (1983) Accumulation of copper, lead, and arsenic in some Australian orchard soils. Aust J Soil Res 21:549–561

    CAS  Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M, Hirner AV, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    PubMed  CAS  Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    PubMed  CAS  Google Scholar 

  • Morin G, Juillot F, Casiot C et al (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V) - iron(III) gels in the Carnoule`s acid mine drainage, France. A XANES, XRD, and SEM study. Environ Sci Technol 37:1705–1712

    PubMed  CAS  Google Scholar 

  • Mouchet P (1992) From conventional to biological removal of iron and manganese in France. J Am Water Works Ass 84:158–166

    CAS  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311

    PubMed  CAS  Google Scholar 

  • Muller D, Me´digue C, Koechler S et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:518–530

    CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125

    PubMed  CAS  Google Scholar 

  • Murase J, Kimura M (1997) Anaerobic reoxidation of Mn2+, Fe2+, S0 and S2− in submerged paddy soils. Biol Fertil Soils 25:302–306

    CAS  Google Scholar 

  • Murdoch A, Clair TA (1986) Transport of arsenic and mercury from gold mining activities through an aquatic system. Sci Total Environ 57:205–216

    Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhizaspecific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transporter in solanaceous species. Plant J 42:236–250

    PubMed  CAS  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    CAS  Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    PubMed  CAS  Google Scholar 

  • Nies DH, Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus. J Bacteriol 171:896–900

    PubMed  CAS  Google Scholar 

  • Nordstrom DK (2002) Public health – worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    PubMed  CAS  Google Scholar 

  • NRC (1995) Arsenic in drinking water. National Research Council. National Academy Press, Washington,DC

    Google Scholar 

  • NRC (1977) (National Research Council). Medical and biological effects of environmental pollutants—arsenic. Washington, DC7 National Academy of Sciences

    Google Scholar 

  • Nriagu JO (1994) Arsenic in the environment: human health and ecosystem effects. Advances in environmental science and technology, vol 27. Wiley, New York

    Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333:134–139

    PubMed  CAS  Google Scholar 

  • O’Day PA, Vlassopoulos D, Root R, Rivera N (2004) The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc Natl Acad Sci USA 101:13703–13708

    PubMed  Google Scholar 

  • Ohno K, Furukawa A, Hayashi K, Kamei T, Magara Y (2005) Arsenic contamination of groundwater in Nawabganj, Bangladesh, focusing on the relationship with other metals and ions. Water Sci Technol 52:87–94

    PubMed  CAS  Google Scholar 

  • Ohnuki T, Kozai N, Samadfam M, Yasuda R, Yamamoto S, Narumi K, Naramoto H, Murakami T (2004) The formation of autunite (Ca(UO2)2(PO4)2SnH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite. Chem Geol 211:1–14

    CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49

    PubMed  CAS  Google Scholar 

  • Otte ML, Rozema J, Koster L, Haarsma MS, Broekman RA (1989) Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytol 111:309–317

    CAS  Google Scholar 

  • Otte ML, Dekkers MJ, Rozema J, Broekman RA (1991) Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation. Can J Bot 69:2670–2677

    CAS  Google Scholar 

  • Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP (1995) Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol 43:1112–1117

    PubMed  CAS  Google Scholar 

  • Peng X, Wei MX, Ping Y, Zhi Min C, Wang XQ (2011) Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea. Environ Pollut 159:92–99

    Google Scholar 

  • Pershagen G (1983) The epidemiology of human arsenic exposure. In: Fowler BA (ed) Biological and environmental effects of arsenic. Elsevier Science Publishers, Amsterdam, pp 199–232

    Google Scholar 

  • Peryea FJ, Creger TL (1994) Vertical distribution of lead and arsenic in soils contaminated with lead arsenate pesticide residues. Water Air Soil Pollut 78:297–306

    CAS  Google Scholar 

  • Pongratz W, Endler PC, Poitevin B, Kartnig T (1995) Effect of extremely diluted plant hormone on cell culture. Proc AAAS Ann Meeting, Atlanta

    Google Scholar 

  • Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Sci Total Environ 4:365–371

    CAS  Google Scholar 

  • Postma P, Larsen F, Hue NTM, Duc MT, Viet PH, Nhan PQ et al (2007) Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim Cosmochim Acta 71:5054–5071

    CAS  Google Scholar 

  • Powis G, Mustacich D, Coon A (2000) The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29:312–322

    PubMed  CAS  Google Scholar 

  • Rahman MM, Chowdhury UK, Mukherjee SC, Mondal BK, Paul K, Lodh D, Biswas BK, Chanda CR, Basu GK, Saha KC, Roy S, Das R, Palit SK, Quamruzzaman Q, Dipankar C (2001) Chronic arsenic toxicity in Bangladesh and West Bengal, India – a review and commentary. J Toxicol Clin Toxicol 39:683–700

    PubMed  CAS  Google Scholar 

  • Rahman MM, Rahman F, Sansom L, Naidu R, Schmidt O (2009) Arsenic interactions with lipid particles containing iron. Environ Geochem Health 31:201–206

    PubMed  CAS  Google Scholar 

  • Rakhshaee R, Khosravi M, Ganji MT (2006) Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater 134:120–129

    PubMed  CAS  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    PubMed  CAS  Google Scholar 

  • Rittle KA, Drever JI, Colberg PJS (1995) Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiol J 13:1–11

    CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamental and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    PubMed  CAS  Google Scholar 

  • Rosen PB (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    PubMed  CAS  Google Scholar 

  • Rowland HAL, Pederick RL, Polya DA, Pancost RD, van Dongen BE, Gault AG, Vaughan DJ, Bryant C, Anderson B, Lloyd JR (2007) The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 5:281–292

    CAS  Google Scholar 

  • Roychowdhury T, Uchino T, Tokunaga H, Ando M (2002) Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India. Chemosphere 49:605–618

    PubMed  CAS  Google Scholar 

  • Saha GC (2006) Accumulation of arsenic in agricultural soil and selected crops. PhD thesis, Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

    Google Scholar 

  • Saha GC, Ali MA (2007) Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci Total Environ 379:180–189

    PubMed  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2002) Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environ Toxicol Chem 21:2075–2079

    CAS  Google Scholar 

  • Sanford RA, Klein DA (1988) Environmental bioremediation for organometallic compounds: microbial growth and arsenic volatilisation from soil and retorted shale. Appl Organomet Chem 2:159–169

    CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    PubMed  CAS  Google Scholar 

  • Sanyal SK, Dhillon KS (2005) Arsenic and selenium dynamics in water-soil-plant system: a threat to environmental quality. Indian Society of Soil Science. Proceedings of the International Conference on Soil Water and Environmental Quality, New Delhi, pp 293–263

    Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    PubMed  CAS  Google Scholar 

  • Saunders JA, Lee MK, Uddin A, Mohammed S, Wilkin RT, Fayek M, Korte NE (2005) Natural arsenic contamination of Hoocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geosyst 6:1–7

    Google Scholar 

  • Sela M, Garty J, Tel-or E (1989) The accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytol 112:7–12

    CAS  Google Scholar 

  • Senn DB, Hemond HF (2004) Particulate arsenic and iron during anoxia in a eutrophic, urban lake. EnvironToxicol Chem 23:1610–1616

    CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Symbiotic solution to arsenic contamination. Nature 404:951–952

    PubMed  CAS  Google Scholar 

  • Shen YF, Sun DJ, Zhao XH, Yu GQ (2005) Screening report in areas of endemic arsenism and high content of arsenic in China. Chin J Endemiol (in Chinese) 24:172–175

    CAS  Google Scholar 

  • Shi J, Vlamis-Gardikas A, Aslund F, Holmgren A, Rosen BP (1999) Reactivity of glutaredoxins 1, 2 and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274:36039–36042

    PubMed  CAS  Google Scholar 

  • Shimizu M, Hochadel JF, Fulmer BA, Waalkes MP (1998) Effects of glutathione depletion and metallothionine gene expression on arsenic-induced cytotoxicity and c-myc expression in vitro. Toxicol Sci 45:204–211

    PubMed  CAS  Google Scholar 

  • Shneidman D, Belizaire R (1986) Arsenic exposure followed by the development of dermatofibrosarcoma protuberans. Cancer 58:1585–1587

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    PubMed  CAS  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    PubMed  CAS  Google Scholar 

  • Singh S, Lee W, DaSilva NA, Mulchandani A, Chen W (2008a) Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnol Bioeng 99:333–340

    PubMed  CAS  Google Scholar 

  • Singh S, Mulchandani A, Chen W (2008b) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927

    PubMed  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    CAS  Google Scholar 

  • Smith AH, Lingas OE, Rahman M (2000) Contamination of drinking water by arsenic in Bangladesh: A public health emergency. Bull World Health Organ 78:1093–1103

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York, London, Burlington, San Diego

    Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment. A review. Adv Agron 64:149–195

    CAS  Google Scholar 

  • Sohrin Y, Matsui M, Kawashima M, Hojo M, Hasegawa H (1997) Arsenic biochemistry affected by eutrophication in Lake Biwa. Jpn Environ Sci Technol 31:2712–2720

    CAS  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    PubMed  CAS  Google Scholar 

  • Squibb KS, Fowler BA (1983) The toxicity of arsenic and its compounds. In: Fowler BA (ed) Biological and environmental effects of arsenic. Elsevier Science Publishers, Amsterdam, pp 233–269

    Google Scholar 

  • Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10:27–33

    PubMed  CAS  Google Scholar 

  • Thomas JE, Rhue RD (1997) Volatilization of arsenic in contaminated cattle dipping vat soil. Bull Environ Contam Toxicol 59:882–887

    PubMed  CAS  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    PubMed  CAS  Google Scholar 

  • Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667

    PubMed  CAS  Google Scholar 

  • Tseng WP (1977) Effects and dose–response relationships of skin cancer and Blackfoot disease with arsenic. Environ Health Perspect 19:109–119

    PubMed  CAS  Google Scholar 

  • Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40:453–463

    PubMed  CAS  Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145

    PubMed  CAS  Google Scholar 

  • Turpeinen U, Pantsar-Kallioa M, Häggblomb M, Kairesaloa T (1999) Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. The Sci Tot Environ 236:173–180

    Google Scholar 

  • Uppanan P (2000) Screening and characterization of bacteria capable of biotransformation of toxic arsenic compound in soil, M.Sc. Thesis, Mahidol University, Thailand

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1997) Recent development for in-situ treatment of metal contaminated soils. Office of Solid Waste and Emergency Response, EPA-542-R-97-004, pp 8

    Google Scholar 

  • Vazquez S, Agha R, Granado A, Sarro MJ, Estrban E, Penalosa JM (2006) Use of white lupin plant for phytostabilizzation of Cd and As polluted acid soil. Water Air Soil Pollut 177:349–355

    CAS  Google Scholar 

  • Visoottiviseth P, Panviroj N (2001) Selection of fungi capable of removing toxic arsenic compounds from liquid medium. Sci Asia 27:83–92

    CAS  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    PubMed  CAS  Google Scholar 

  • Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26

    Google Scholar 

  • Wakao N, Koyatsu H, Komai Y, Shimokawara H, Sakurai Y, Shiota H (1988) Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine. Geomicrobiol J 6:11–24

    CAS  Google Scholar 

  • Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    PubMed  CAS  Google Scholar 

  • Wang S, Mulligan CN (2006) Effect of natural organic matter on arsenic release from soil and sediments into groundwater. Environ Geochem Health 28:197–214

    PubMed  CAS  Google Scholar 

  • Wang CL, Maratukulam PD, Lum AM, Clark DS, Keasling JD (2000) Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface. Appl Environ Microbiol 66:4497–4502

    PubMed  CAS  Google Scholar 

  • Webb JL (1966) Enzymes and metabolic inhibitors vol 3. New York, 7 Academic Press

    Google Scholar 

  • Wei Q, Matanoski GM, Farmer ER, Hedayati MA, Grossman L (1994) DNA repair and susceptibility to basal cell carcinoma: a case-control study. Am J Epidemiol 140:598–607

    PubMed  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323

    CAS  Google Scholar 

  • WHO (2001) Environmental health criteria 224, arsenic and arsenic compounds. Inter-organization programme for the sound management of chemicals, Geneva

    Google Scholar 

  • Wilkie JA, Hering JG (1998) Rapid oxidation of geothermal arsenic(III) in stream waters of the eastern Sierra Nevada. Environ Sci Technol 32:657–662

    CAS  Google Scholar 

  • Williams PN, Islam MR, Hussain SA, Meharg AA. Arsenic absorption by rice. CIMMYT/ USGS (2005) Symposium on the behaviour of arsenic in aquifers, soils and plants: implications for management, Dhaka, Jan (16–18). Centro Internacional de Mejoramiento de Maíz y Trigo and the U.S. Geological Survey

    Google Scholar 

  • Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG et al. (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol 40:4903–4908

    PubMed  CAS  Google Scholar 

  • Winship KA (1984) Toxicity of inorganic arsenic salts. Adv Drug React Acute Poisoining Rev 3:129–160

    CAS  Google Scholar 

  • Woolson EA (1977) Generation of alkylarsines from soil. Weed Sci 25:412–416

    CAS  Google Scholar 

  • Wu FY, Ye ZH, Wonga MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76:1258–1264

    PubMed  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    PubMed  CAS  Google Scholar 

  • Xiong XZ, Li PJ, Wang YS, Ten H, Wang LP, Song SH (1987) Environmental capacity of arsenic in soil and mathematical model. Huanjing Kexue 8:8–14

    CAS  Google Scholar 

  • Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491–2501

    PubMed  CAS  Google Scholar 

  • Zaldivar R (1980) A morbid condition involving cardiovascular, brochopulmonary, digestive and neural lesions in children and young adults after dietary arsenic exposure. Zentralblatt fur Bacteriologie 1 Abt Originale B: Hygiene, Krankenhaushygiene, Betriebshygiene Praventive Medizin 170:44–56

    CAS  Google Scholar 

  • Zaldivar R, Ghai GL (1980) Clinical epidemiological studies on endemic chronic arsenic poisoning in children and adults, including observations on children with high- and low-intake of dietary arsenic. Zentralblatt fur Bacteriologie 1 Abt Originale B: Hygiene, Krankenhaushygiene, Betriebshygiene. Praventive Medizin 170:409–421

    CAS  Google Scholar 

  • Zaloga GP, Deal J, Spurling T, Richter J, Chernow B (1985) Case report: unusual manifestations of arsenic intoxication. Am J Med Sci 289:210–214

    PubMed  CAS  Google Scholar 

  • Zavala YJ, Duxbury JM (2008) Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42:3856–3860

    PubMed  CAS  Google Scholar 

  • Zawadzka AM, Crawford RL, Paszczynski AJ (2007) Pyridine-2,6 bis(thiocarboxylic acid) produced by Pseudomonal stutzeri KC reduces chromium (VI) and precipitates mercury, cadmium, lead and arsenic. Biometals 20:145–158

    PubMed  CAS  Google Scholar 

  • Zhang XK, Zhang FS, Mao DR (1998) Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): zinc uptake by Fe-deficient rice. Plant Soil 202:33–39

    CAS  Google Scholar 

  • Zhang X, Lin Ai-Jun, Zhao F-J, Guo-Zhong Xu, Duan G-L, Zhu Y-G (2008) Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environ Pollut 156:1149–1155

    PubMed  CAS  Google Scholar 

  • Zhang X, Zhao FJ, Huang Q, Williams PN, Sun GX, Zhu YG (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182:421–428

    PubMed  CAS  Google Scholar 

  • Zhong ZM, Cai Chao Hu, Ying Sun GuoXin, Williams PN, HaoJie C, Gang L, Jie ZF, Guan ZY (2011) Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytol 189:200–209

    Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of arsenate. Environ Sci Technol 34:4747–4753

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Jyoti Purakayastha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Purakayastha, T.J. (2011). Microbial Remediation of Arsenic Contaminated Soil. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_12

Download citation

Publish with us

Policies and ethics