Supporting Arabic Cross-Lingual Retrieval Using Contextual Information

  • Farag Ahmed
  • Andreas Nürnberger
  • Marcus Nitsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6653)


One of the main problems that impact the performance of cross-language information retrieval (CLIR) systems is how to disambiguate translations and - since this usually can not be done completely automatic - how to smoothly integrate a user in this disambiguation process. In order to ensure that a user has a certain confidence in selecting a translation she/he possibly can not even read or understand, we have to make sure that the system has provided sufficient information about translation alternatives and their meaning. In this paper, we present a CLIR tool that automatically translates the user query and provides possibilities to interactively select relevant terms using contextual information. This information is obtained from a parallel corpus to describe the translation in the user’s query language. Furthermore, a user study was conducted to identify weaknesses in both disambiguation algorithm and interface design. The outcome of this user study leads to a much clearer view of how and what CLIR should offer to users.


cross lingual information retrieval word sense disambiguation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelali, A., Cowie, J.R., Farwell, D., Ogden, W.C.: Uclir: a multilingual information retrieval tool. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 8(22), 103–110 (2003)Google Scholar
  2. 2.
    Abusalah, M., Tait, J., Oakes, M.: Literature review of cross language information retrieval. World Academy of Science, Engineering and Technology 4, 175–177 (2005)Google Scholar
  3. 3.
    Ahmed, F., Nürnberger, A.: Arabic/english word translations disambiguation using parallel corpus and matching scheme. In: Proceedings of the 12th European Machine Translation Conference (EAMT 2008), pp. 6–11 (2008)Google Scholar
  4. 4.
    Ahmed, F., Nürnberger, A.: Evaluation of n-gram conflation approaches for arabic text retrieval. Journal of the American Society for Information Science and Technology (JASIST) 60(7), 1448–1465 (2009)CrossRefGoogle Scholar
  5. 5.
    Aljlayl, M., Frieder, O.: Effective arabic-english cross-language information retrieval via machine readable dictionaries and machine translation. In: Proceedings of the 10th CIKIM Conference (CIKM), pp. 295–302. ACM Press, New York (2001)Google Scholar
  6. 6.
    Ballesteros, L., Croft, B.: Dictionary methods for cross-lingual information retrieval. In: Thoma, H., Wagner, R.R. (eds.) DEXA 1996. LNCS, vol. 1134, pp. 791–801. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Braschler, M., Peters, C., Schäuble, P.: Cross-language information retrieval (clir) track overview. In: Proceedings of the Eighth Text Retrieval Conference (TREC-8), pp. 25–33 (2000)Google Scholar
  8. 8.
    Clough, P., Stevenson, M.: Cross-language information retrieval using eurowordnet and word sense disambiguation. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 327–337. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Dagan, I., Itai, A.: Word sense disambiguation using a second language monolingual corpus. Computational Linguistics 20(4), 563–596 (1994)Google Scholar
  10. 10.
    Fernandez-Amoros, D., Gil, R.H., Somolinos, J.A.C., Somolinos, C.C.: Automatic word sense disambiguation using cooccurrence and hierarchical information. In: Hopfe, C.J., Rezgui, Y., Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS, vol. 6177, pp. 60–67. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Levow, G.-A., Oard, D.W., Resnik, P.: Dictionary-based techniques for cross-language information retrieval. Inf. Process. Manage. 41(3), 523–547 (2005), doi:10.1016/j.ipm.2004.06.012CrossRefGoogle Scholar
  12. 12.
    Luca, E.W.D., Hauke, S., Nürnberger, A., Schlechtweg, S.: MultiLexExplorer - combining multilingual web search with multilingual lexical resources. In: Combined Works. on Language-enhanced Educat. Techn. and Devel. and Eval. of Robust Spoken Dialogue Sys., pp. 71–21 (2006)Google Scholar
  13. 13.
    Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers, San Francisco (1994)zbMATHGoogle Scholar
  14. 14.
    Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability problems. In: CHI 1993: Proceedings of the INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems, pp. 206–213 (1993)Google Scholar
  15. 15.
    Oard, D.W., He, D., Wang, J.: User-assisted query translation for interactive cross-language information retrieval. Information Processing and Management: an International Journal 44(1), 181–211 (2008)CrossRefGoogle Scholar
  16. 16.
    Ogden, W.C., Davis, M.W.: Improving cross-language text retrieval with human interactions. In: Proceedings of the 33rd Hawaii International Conference on System Sciences, Washington, DC, USA, p. 3044 (June 2000)Google Scholar
  17. 17.
    Petrelli, D., Beaulieu, M., Sanderson, M., Demetriou, G., Herring, P., Hansen, P.: Observing users, designing clarity: A case study on the user-centered design of a cross-language information retrieval system. Journal of the American Society for Information Science and Technology (JASIST) 55(10), 923–934 (2004)CrossRefGoogle Scholar
  18. 18.
    Salton, G.: Experiments in multi-lingual information retrieval. Information Processing Letters 2(1), 6–11 (1973)CrossRefGoogle Scholar
  19. 19.
    Shinnou, H., Sasaki, M.: Unsupervised learning of word sense disambiguation rules by estimating an optimum iteration number in the em algorithm. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pp. 41–48 (2003)Google Scholar
  20. 20.
    Vossen, P. (ed.): EuroWordNet: a multilingual database with lexical semantic networks. Kluwer Academic Publishers, Norwell (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Farag Ahmed
    • 1
  • Andreas Nürnberger
    • 1
  • Marcus Nitsche
    • 1
  1. 1.Data & Knowledge Engineering Group Faculty of Computer ScienceOtto-von-Guericke-University of MagdeburgGermany

Personalised recommendations