Advertisement

Applying Web Usage Mining for Adaptive Intranet Navigation

  • Sharhida Zawani Saad
  • Udo Kruschwitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6653)

Abstract

Much progress has recently been made in assisting a user in the search process, be it Web search where the big search engines have now all incorporated more interactive features or be it online shopping where customers are commonly recommended items that appear to match the customer’s interest. While assisted Web search relies very much on implicit information such as the users’ search behaviour, recommender systems typically rely on explicit information, expressed for example by a customer purchasing an item. Surprisingly little progress has however been made in making navigation of a Web site more adaptive. Web sites can be difficult to navigate as they tend to be rather static and a new user has no idea what documents are most relevant to his or her need. We try to assist a new user by exploiting the navigation behaviour of previous users. On a university Web site for example, the target users change constantly. In a company the change might not be that dramatic, nevertheless new employees join the company and others retire. What we propose is to make the Web site more adaptive by introducing links and suggestions to commonly visited pages without changing the actual Web site. We simply add a layer on top of the existing site that makes recommendations regarding links found on the page or pages that are further away but have been typical landing pages whenever a user visited the current Web page. This paper reports on a task-based evaluation that demonstrates that the idea is very effective. Introducing suggestions as outlined above was found to be not just preferred by the users of our study but allowed them also to get to the results more quickly.

Keywords

Web usage mining adaptive Web sites evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baraglia, R., Silvestri, F.: Dynamic personalization of web sites without user intervention. Communications of the ACM 50(2), 63–67 (2007)CrossRefGoogle Scholar
  2. 2.
    Bayir, M.A., Toroslu, I.H., Cosar, A., Fidan, G.: Smart miner: A new framework for mining large scale web usage data. In: Proceedings of WWW 2009, pp. 161–170. ACM, New York (2009)Google Scholar
  3. 3.
    Dignum, S., Kruschwitz, U., Fasli, M., Kim, Y., Song, D., Cervino, U., De Roeck, A.: Incorporating Seasonality into Search Suggestions Derived from Intranet Query Logs. In: Proceedings of the IEEE/WIC/ACM International Conferences on Web Intelligence (WI 2010), Toronto, pp. 425–430 (2010)Google Scholar
  4. 4.
    Diriye, A., Blandford, A., Tombros, A.: When is system support effective? In: IIiX 2010, August 18-21, pp. 55–64. ACM, New York (2010)Google Scholar
  5. 5.
    Dumais, S., Joachims, T., Bharat, K., Weigend, A.: Implicit measures of user interests and preferences. In: SIGIR 2003 Workshop Report, pp. 50–54 (2003), SIGIR ForumGoogle Scholar
  6. 6.
    Dupont, G., Requier, S.A., Adam, S., Lecourtier, Y., Grilheres, B., Brunessaux, S.: A step toward an adaptive composition of query suggestion approaches. In: IIiX 2010, August 18-21, pp. 271–274. ACM, New York (2010)Google Scholar
  7. 7.
    Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Transactions on Internet Technology 3(1), 1–27 (2003)CrossRefGoogle Scholar
  8. 8.
    Elsweiler, D., Ruthven, I.: Towards task-based personal information management evaluations. In: SIGIR 2007, pp. 23–30. ACM, Amsterdam (2007)Google Scholar
  9. 9.
    Girardi, R., Marinho, L.B.: A domain model of web recommender systems based on usage mining and collaborative filtering. Requirements Eng. 12(1), 23–40 (2007)CrossRefGoogle Scholar
  10. 10.
    Golovchinsky, G., Pickens, J.: Interactive information seeking via selective application of contextual knowledge. In: IIiX 2010, August 18-21, pp. 145–154. ACM, New York (2010)Google Scholar
  11. 11.
    Harper, D.J., Kelly, D.: Contextual relevance feedback. In: Information Interaction in Context, pp. 129–137 (2006)Google Scholar
  12. 12.
    Hersh, W.R., Over, P.: Trec-9 interactive track report. In: Proceedings of the Ninth Text Retrieval Conference (TREC-9), pp. 41–50. NIST Special Publication 500-249 (2001)Google Scholar
  13. 13.
    Hu, J., Wang, G., Lochovsky, F., Sun, J.-T., Chen, Z.: Understanding user’s query intent with wikipedia. In: Proceedings of WWW 2009, pp. 471–480. ACM, New York (2009)Google Scholar
  14. 14.
    Kelly, D., Belkin, N.J.: Display time as implicit feedback: Understanding task effects. In: SIGIR 2004, pp. 377–383. ACM, Sheffield (2004)Google Scholar
  15. 15.
    Kelly, D., Dumais, S., Pederson, J.O.: Evaluation challenges and directions for information-seeking support systems. Computer 42(3), 60–66 (2009)CrossRefGoogle Scholar
  16. 16.
    Kelly, D., Fu, X.: Eliciting better information need descriptions from users of information search systems. Information Processing and Management 43(2007), 30–46 (2006)Google Scholar
  17. 17.
    Kelly, D., Harper, D.J., Landau, B.: Questionnaire mode effects in interactive information retrieval experiments. Information Processing and Management 44(2008), 122–141 (2007)Google Scholar
  18. 18.
    Kelly, D., Kantor, P.B., Morse, E.L., Scholtz, J., Sun, Y.: User-centered evaluation of interactive question answering systems. In: Proceedings of the Interactive Question Answering Workshop at HLT-NAACL 2006, pp. 49–56. Association for Computational Linguistics, New York City (2006)CrossRefGoogle Scholar
  19. 19.
    Kelly, D., Wacholder, N., Rittman, R., Sun, Y., Kantor, P., Small, S., Strzalkowski, T.: Using interview data to identify evaluation criteria for interactive, analytical question-answering systems. Journal of the American Society for Information Science and Technology 58(7), 1032–1043 (2007)CrossRefGoogle Scholar
  20. 20.
    Kosala, R., Blockeel, H.: Web mining research: a survey. SIGKDD Explorations 2(1), 1–15 (2000)CrossRefGoogle Scholar
  21. 21.
    Kruschwitz, U., Al-Bakour, H.: Users want more sophisticated search assistants: Results of a task-based evaluation. Journal of the American Society for Information Science and Technology 56(13), 1377–1393 (2005)CrossRefGoogle Scholar
  22. 22.
    Kruschwitz, U., Albakour, M.-D., Niu, J., Leveling, J., Nanas, N., Kim, Y., Song, D., Fasli, M., Roeck, A.D.: Moving towards Adaptive Search in Digital Libraries. In: Advanced Language Technologies for Digital Libraries. Springer, Heidelberg (forthcoming, 2011)Google Scholar
  23. 23.
    Kules, B., Capra, R.: Creating exploratory tasks for a faceted search interface. In: Second Workshop on Human-Computer Interaction and Information Retrieval, HCIR 2008 (October 2008)Google Scholar
  24. 24.
    Nasraoui, O., Soliman, M., Saka, E., Badia, A., Germain, R.: A web usage mining framework for mining evolving user profiles in dynamic web sites. IEEE Transactions on Knowledge and Data Engineering 20(2), 202–215 (2008)CrossRefGoogle Scholar
  25. 25.
    Perkowitz, M., Etzioni, O.: Adaptive Web Sites: an AI Challenge. Artificial Intelligence 11(1), 246–271 (1997)Google Scholar
  26. 26.
    Perkowitz, M., Etzioni, O.: Adaptive web sites: Conceptual cluster mining. Artificial Intelligence 17(1), 243–273 (1999)zbMATHGoogle Scholar
  27. 27.
    Perkowitz, M., Etzioni, O.: Towards adaptive web sites: Conceptual framework and case study. Artificial Intelligence 118(1), 245–275 (2000)CrossRefzbMATHGoogle Scholar
  28. 28.
    Qu, P., Liu, C., Lai, M.: The effect of task type and topic familiarity on information search behaviours. In: IIiX 2010, August 18-21, pp. 371–375. ACM, New York (2010)Google Scholar
  29. 29.
    Saad, S.Z.: Web personalization based on usage mining. In: The 3rd BCS IRSG Symposium on Future Directions in Information Access, FDIA 2009, pp. 15–21 (2009)Google Scholar
  30. 30.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 1(2), 12–23 (2000)CrossRefGoogle Scholar
  32. 32.
    Teevan, J., Dumais, S.T., Horvitz, E.: Beyond the commons: Investigating the value of personalizing web search. User Modeling and User-Adapted Interaction 13(1), 311–372 (2005)Google Scholar
  33. 33.
    Wacholder, N., Kelly, D., Kantor, P., Rittman, R., Sun, Y., Bai, B.: A model for quantitative evaluation of an end-to-end question-answering system. Journal of the American Society for Information Science and Technology 58(8), 1082–1099 (2007)CrossRefGoogle Scholar
  34. 34.
    Walker, M., Kamm, C., Litman, D.: Towards developing general models of usability with paradise. Natural Language Engineering 6(3), 363–377 (2000)CrossRefGoogle Scholar
  35. 35.
    White, R.W., Jose, J.M., Ruthven, I.: An implicit feedback approach for interactive information retrieval. Information Processing and Management 42(2006), 166–190 (2004)Google Scholar
  36. 36.
    White, R.W., Kelly, D.: A study on the effects of personalization and task information on implicit feedback performance. In: Proceedings of CIKM 2006, Arlington, Virginia, USA, pp. 297–306 (2006)Google Scholar
  37. 37.
    White, R.W., Ruthven, I., Jose, J.M.: The use of implicit evidence for relevance feedback in web retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 93–109. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  38. 38.
    Yuan, X., Belkin, N.J.: Investigating information retrieval support techniques for different information-seeking strategies. Journal of the American Society for Information Science and Technology 61(8), 1543–1563 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sharhida Zawani Saad
    • 1
  • Udo Kruschwitz
    • 1
  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations