Skip to main content

Towards an Evolutionary Design of Modular Robots for Industry

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6686))

Abstract

We are interested in the next generation of industrial robots, those that are able to operate in dynamic and unstructured environments and, consequently, that are able to adapt to changing circumstances or to work on different tasks in an autonomous way. In this sense, multirobot systems and, in particular, modular systems present several features like scalability, fault tolerance, low maintenance or reconfiguration capabilities that make them highly suitable for this kind of environments. The work presented here is concerned with the problem of automatically obtaining the morphology and control structure for this type of modular systems. In this line, we present the first results produced using a newly designed constructive evolutionary approach that takes into account the extreme difficulty of the tremendously deceptive and uninformative search space this type of applications are faced with. As an example, the algorithm is used to design the morphology and the distributed control parameters for a typical benchmark problem, that of moving as far as possible in a straight line, for a heterogeneous modular robotic system developed by our group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ortiz, F., Pastor, J., Alvarez, B., Iborra, A., Ortega, N., Rodriguez, D., Concsa, C.: Robots for hull ship cleaning. In: IEEE International Symposium on Industrial Electronics, pp. 2077–2082 (2007)

    Google Scholar 

  2. Lee, D., Lee, S., Ku, N., Lim, C., Lee, K., Kim, T., Kim, J.: Development and Application of a Novel Rail Runner Mechanism for Double Hull Structures of Ships. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3985–3991 (2008)

    Google Scholar 

  3. Duro, R., Graña, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to Multicomponent Robotic System development. Information Sciences 180, 2635–2648 (2010)

    Article  Google Scholar 

  4. Yim, M., Duff, D., Roufas, K.: PolyBot: a modular reconfigurable robot. In: IEEE International Conference on Robotics and Automation, pp. 514–520 (2000)

    Google Scholar 

  5. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME transactions on mechatronics 7, 431–441 (2002)

    Article  Google Scholar 

  6. Castano, A., Behar, A., Will, P.M.: The Conro modules for reconfigurable robots. IEEE/ASME Transactions on Mechatronics 7, 403–409 (2002)

    Article  Google Scholar 

  7. Ranasinghe, N., Everist, J., Shen, W.M.: Modular Robot Climbers. In: Proc. 2007 IEEE/RSJ Intl. Conf. Intelligent Robots Systems (2007)

    Google Scholar 

  8. Salemi, B., Moll, M., Shen, W.: SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proc. 2006 IEEE/RSJ Intl. Conf. Intelligent Robots Systems, pp. 3636–3641 (2006)

    Google Scholar 

  9. Macinnes, I., Di Paolo, E.: Crawling out of the simulation: Evolving real robot morphologies using cheap, reusable modules. In: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Artificial Life, pp. 94–99 (2004)

    Google Scholar 

  10. Farritor, S., Dubowsky, S., Rutman, N.: On the design of rapidly deployable field robotic systems. In: ASME Design Engineering Technical Conference (1996)

    Google Scholar 

  11. Caamano, P., Tedin, R., Paz-Lopez, A., Becerra, J.A.: JEAF: A Java Evolutionary Algorithm Framework. IEEE Congress on Evolutionary Computation, 1–8 (2010)

    Google Scholar 

  12. Brandt, D., Christensen, D.J., Lund, H.H.: ATRON Robots: Versatility from Self-Reconfigurable Modules. In: Conference on Mechatronics and Automation, pp. 26–32 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faíña, A., Bellas, F., Souto, D., Duro, R.J. (2011). Towards an Evolutionary Design of Modular Robots for Industry. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics