Skip to main content

Modeling and Discovering Occupancy Patterns in Sensor Networks Using Latent Dirichlet Allocation

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Abstract

This paper presents a novel way to perform probabilistic modeling of occupancy patterns from a sensor network. The approach is based on the Latent Dirichlet Allocation (LDA) model. The application of the LDA model is shown using a real dataset of occupancy logs from the sensor network of a modern office building. LDA is a generative and unsupervised probabilistic model for collections of discrete data. Continuous sequences of just binary sensor readings are segmented together in order to build the dataset discrete data (bag-of-words). Then, these bag-of-words are used to train the model with a fixed number of topics, also known as routines. Preliminary obtained results state that the LDA model successfully found latent topics over all rooms and therefore obtain the dominant occupancy patterns or routines on the sensor network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM, New York (1999)

    Google Scholar 

  3. Griffiths, T., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America 101(suppl. 1), 5228–5235 (2004)

    Article  Google Scholar 

  4. Niebles, J., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision 79(3), 299–318 (2008)

    Article  Google Scholar 

  5. C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westhues, “The merl motion detector dataset,” in Proceedings of the 2007 workshop on Massive datasets, ser. MD ’07.plus 0.5em minus 0.4emNew York, NY, USA: ACM, 2007, pp. 10–14. [Online]. Available: http://doi.acm.org/10.1145/1352922.1352926

    Google Scholar 

  6. Connolly, C., Burns, J., Bui, H.: Recovering social networks from massive track datasets. In: IEEE Workshop on Applications of Computer Vision, WACV 2008, pp. 1–8. IEEE, Los Alamitos (2008)

    Google Scholar 

  7. Salah, A., Pauwels, E., Tavenard, R., Gevers, T.: T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data. Sensors 10(8), 7496–7513 (2010)

    Article  Google Scholar 

  8. Magnusson, M.: Discovering hidden time patterns in behavior: T-patterns and their detection. Behavior Research Methods Instruments and Computers 32(1), 93–110 (2000)

    Article  Google Scholar 

  9. McKeever, S., Ye, J., Coyle, L., Bleakley, C., Dobson, S.: Activity recognition using temporal evidence theory. Journal of Ambient Intelligence and Smart Environments 2(3), 253–269 (2010)

    Google Scholar 

  10. Skogster, P., Uotila, V., Ojala, L.: From mornings to evenings: is there variation in shopping behaviour between different hours of the day? International Journal of Consumer Studies 32(1), 65–74 (2008)

    Google Scholar 

  11. Farrahi, K., Gatica-Perez, D.: Discovering routines from large-scale human locations using probabilistic topic models. ACM Transactions on Intelligent Systems and Technology 2(1) (2011)

    Google Scholar 

  12. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational methods for graphical models. Machine learning 37(2), 183–233 (1999)

    Article  MATH  Google Scholar 

  13. Asuncion, A., Welling, M., Smyth, P., Teh, Y.W.: On smoothing and inference for topic models. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (2009)

    Google Scholar 

  14. Salton, G., McGill, M.: Introduction to modern information retrieval, New York (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castanedo, F., Aghajan, H., Kleihorst, R. (2011). Modeling and Discovering Occupancy Patterns in Sensor Networks Using Latent Dirichlet Allocation. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics