Clustering of Trajectories in Video Surveillance Using Growing Neural Gas

  • Javier Acevedo-Rodríguez
  • Saturnino Maldonado-Bascón
  • Roberto López-Sastre
  • Pedro Gil-Jiménez
  • Antonio Fernández-Caballero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)


One of the more important issues in intelligent video surveillance systems is the ability to handle events from the motion of objects. Thus, the classification of the trajectory of an object of interest in a scene can give important information to higher levels of recognition. In this context, it is crucial to know what trajectories are commonly given in a model in order to detect suspect ones. This implies the study of a set of trajectories and grouping them into different categories. In this paper, we propose to adapt a bioinspired clustering algorithm, growing neural gas, that has been tested in other fields with high level of success due to its nice properties of being unnecessary to know a priori the number of clusters, robustness and that it can be adapted to different distributions. Due to the fact that human perception is based on atomic events, a segmentation of the trajectories is proposed. Finally, the obtained prototype sub-trajectories are grouped according to the sequence of the observed data to feed the model.


Trajectory clustering growing neural gas high-level video surveillance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonini, G., Thiran, J.: Counting pedestrians in video sequences using trajectory clustering. IEEE Transactions on Circuits and Systems for Video Technology 16(8), 1008–1020 (2006)CrossRefGoogle Scholar
  2. 2.
    Atev, S., Masoud, O., Papanikolopoulos, N.: Learning traffic patterns at intersections by spectral clustering of motion trajectories. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4851–4856 (2006)Google Scholar
  3. 3.
    Atev, S., Miller, G., Papanikolopoulos, N.: Clustering of vehicle trajectories. IEEE Transactions on Intelligent Transportation Systems 11(3), 647–657 (2010)CrossRefGoogle Scholar
  4. 4.
    Bashir, F.I., Khokhar, A., Schonfeld, D.: Object trajectory-based activity classification and recognition using hidden markov models. IEEE Transactions on Image Processing 16(7), 1912–1919 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: International Conference on Pattern Recognition, pp. 521–524 (2004)Google Scholar
  6. 6.
    Canales, F., Chacón, M.: Modification of the growing neural gas algorithm for cluster analysis. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 684–693. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Cheriyadat, A., Radke, R.: Automatically determining dominant motions in crowded scenes by clustering partial feature trajectories. In: Proceedings of the First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2007 (2007)Google Scholar
  8. 8.
    Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems, vol. 7, pp. 625–632 (1995)Google Scholar
  9. 9.
    Fu, Z., Hu, W., Tan, T.: Similarity based vehicle trajectory clustering and anomaly detection. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 2, pp. 602–605 (2005)Google Scholar
  10. 10.
    Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing spatio-temporal trajectories. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 763–775. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Hershberger, J., Snoeyink, J.: Speeding up the douglas-peucker line-simplification algorithm. In: Proc. 5th Intl. Symp. on Spatial Data Handling, pp. 134–143 (1992)Google Scholar
  12. 12.
    Hirasawa, N.S.K., Tanaka, K., Kobayashi, Y., Sato, Y., Fujino, Y.: Learning motion patterns and anomaly detection by human trajectory analysis. In: IEEE International Conference on Systems, Man and Cybernetics, ISIC 2007, pp. 498–503 (2007)Google Scholar
  13. 13.
    Jung, C., Hennemann, L., Musse, S.: Event detection using trajectory clustering and 4-d histograms. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1565–1575 (2008)CrossRefGoogle Scholar
  14. 14.
    Li, X., Hu, W., Hu, W.: A coarse-to-fine strategy for vehicle motion trajectory clustering. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 1, pp. 591–594 (2006)Google Scholar
  15. 15.
    Morris, B., Trivedi, M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology 18(8), 1114–1127 (2008)CrossRefGoogle Scholar
  16. 16.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press, Cambridge (2001)Google Scholar
  17. 17.
    Piciarelli, C., Foresti, G.: On-line trajectory clustering for anomalous events detection. Pattern Recognition Letters 27(15), 1835–1842 (2006)CrossRefGoogle Scholar
  18. 18.
    Pop, I., Scuturici, M., Miguet, S.: Incremental trajectory aggregation in video sequences. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)Google Scholar
  19. 19.
    Yanagisawa, Y., Satoh, T.: Clustering multidimensional trajectories based on shape and velocity. In: Proceedings of 22nd International Conference on Data Engineering Workshops, p. 12 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier Acevedo-Rodríguez
    • 1
  • Saturnino Maldonado-Bascón
    • 1
  • Roberto López-Sastre
    • 1
  • Pedro Gil-Jiménez
    • 1
  • Antonio Fernández-Caballero
    • 2
    • 3
  1. 1.Teoría de la señal y ComunicacionesUniversity of AlcalaAlcalá de HenaresSpain
  2. 2.Instituto de Investigación en Informática de Albacete (I3A)Universidad de Castilla-La ManchaAlbaceteSpain
  3. 3.Departamento de Sistemas InformáticosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations