Localization and Segmentation of the Optic Nerve Head in Eye Fundus Images Using Pyramid Representation and Genetic Algorithms

  • José M. Molina
  • Enrique J. Carmona
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)


This paper proposes an automatic method to locate and segment the optic nerve head (papilla) from eye fundus color photographic images. The method is inspired in the approach presented in [1]. Here, we use a Gaussian pyramid representation of the input image to obtain a subwindow centered at a point of the papillary area. Then, we apply a Laplacian pyramid to this image subwindow and we obtain a set of interest points (IPs) in two pyramid levels. Finally, a two-phase genetic algorithm is used in each pyramid level to find an ellipse containing the maximum number of IPs in an offset of its perimeter and, in this way, to achieve a progressive solution to the ONH contour. The method is tested in an eye fundus image database and, in relation to the method described in [1], the proposed method provides a slightly lower performance but it simplifies the methodology used to obtain the set of IPs and also reduces the computational cost of the whole process.


Optic Nerve Head Interest Point Laplacian Pyramid Gaussian Pyramid Pyramid Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carmona, E.J., Rincón, M., García-Feijoo, J., Martínez-de-la-Casa, J.M.: Identification of the Optic Nerve Head with Genetic Algorithms. Artificial Intelligence in Medicine 43(3), 243–259 (2008)CrossRefGoogle Scholar
  2. 2.
    Cox, J., Wood, I.: Computer-assisted optic nerve head assessment. Ophthalmic and Physiological Optic 11(1), 27–35 (1991)CrossRefGoogle Scholar
  3. 3.
    Morris, T., Donnison, C.: Identifying the neuroretinal rim boundary using dynamic contours. Image and Vision Computing 17(3-4), 169–174 (1999)CrossRefGoogle Scholar
  4. 4.
    Mendels, F., Heneghan, C., Thiran, J.: Identification of the optic disk boundary in retinal images using active contours. In: Proceedings of the Irish Machine Vision and Image Processing Conference (IMVIP 1999), pp. 103–115 (1999)Google Scholar
  5. 5.
    Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Colour morphology and snakes for optic disc localisation. In: Proceedings of the 6th Medical Image Understanding and Analysis Conference, pp. 21–24 (2002)Google Scholar
  6. 6.
    Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Fletcher, E., Kennedy, L.: Optic nerve head segmentation. IEEE Transaction on Medical Imaging 23(2), 256–264 (2004)CrossRefGoogle Scholar
  7. 7.
    Novo, J., Penedo, M.G., Santos, J.: Localisation of the optic disc by means of GA-optimised Topological Active Nets. Image and Vision Computing 27(10), 1572–1584 (2009)CrossRefGoogle Scholar
  8. 8.
    Welfer, D., Scharcanski, J., Kitamura, C.M., Dal Pizzol, M.M., Ludwig, L.W.B., Ruschel, D.: Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Computers in Biology and Medicine 40, 124–137 (2010)CrossRefGoogle Scholar
  9. 9.
    Rangayyan, R.M., Zhu, X., Ayres, F.J., Ells, A.L.: Detection of the Optic Nerve Head in Fundus Images of the Retina with Gabor Filters and Phase Portrait Analysis. Journal of Digital Imaging 23(4), 438–453 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhu, X., Rangayyan, R.M., Ells, A.L.: Detection of the Optic Nerve Head in Fundus Images of the Retina Using the Hough Transform for Circles. Journal of Digital Imaging 23(3), 332–341 (2010)CrossRefGoogle Scholar
  11. 11.
    Lalonde, M., Beaulieu, M., Gagnon, L.: Fast and Robust Optic Disc Detection Using Pyramidal Decomposition and Hausdorff-Based Template Matching. IEEE Transactions on Medical Imaging 20(11), 1193–1200 (2001)CrossRefGoogle Scholar
  12. 12.
    Bachiller, M., Rincón, M., Mira, J., García-Feijó, J.: An automatic system for the location of the optic nerve head from 2D images. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2085, pp. 319–327. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    DRIONS-DB: Digital Retinal Images for Optic Nerve Segmentation Database, (accessed on August 21, 2009)
  14. 14.
    Burt, P.J., Adelson, E.H.: The Laplacian Pyramid as a Compact Image Code. IEEE Transactions on Communications 31(4), 532–540 (1983)CrossRefGoogle Scholar
  15. 15.
    Shields, M.B.: Color atlas of glaucoma. Williams and Wilkins, Baltimore (1998)Google Scholar
  16. 16.
    Holland, J.H.: Adaption in Natural and Artificial Systems. MIT Press, Cambridge (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • José M. Molina
    • 1
  • Enrique J. Carmona
    • 1
  1. 1.Dpto. de Inteligencia Artificial, ETSI InformáticaUniversidad Nacional de Educación a Distancia (UNED)MadridSpain

Personalised recommendations