Advertisement

Long Term Modulation and Control of Neuronal Firing in Excitable Tissue Using Optogenetics

  • L. Humphreys
  • J. M. Ferrández
  • E. Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)

Abstract

Since the initial demonstration of nerve excitation and the subsequent action potential generation by Hodgkin and Huxley in 1952, most efforts in modulating or restoring neural activity to cure diseases or injury have concentrated on using neural interfaces for electrical stimulation with electrodes. However, it was soon appreciated that repeated chronic stimulations necessary for lasting rehabilitation could have its drawbacks. Namely, the eventual degradation of tissue and electrodes, issues of biocompatibility and immune responses to foreign objects. Nevertheless, new innovative methods are emerging which can improve the quality and duration of neural stimulations. Here we review and suggest an alternative approach to modulate activity using optogenetics in therapy.

Keywords

Deep Brain Stimulation Cochlear Implant Neuronal Firing Microelectrode Array Chronic Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Normann, R.A., Greger, B.A., House, P., Romero, S.F., Pelayo, F., Fernandez, E.: Toward the development of a cortically based visual neuroprosthesis. J. Neural Eng. 6(3). 35001 (2009)CrossRefGoogle Scholar
  2. 2.
    Fernandez, E., Pelayo, F., Romero, S., Bongard, M., Marin, C., Alfaro, A., Merabet, L.: Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J. Neural Eng. 2(4), R1–R12 (2005)CrossRefGoogle Scholar
  3. 3.
    Fallon, J.B., Irvine, D.R., Shepherd, R.K.: Cochlear implants and brain plasticity. Hear. Res. 238(1–2), 110–117 (2008)CrossRefGoogle Scholar
  4. 4.
    Awan, N.R., Lozano, A., Hamani, C.: Deep brain stimulation: current and future perspectives. Neurosurg. Focus 27(1), 2 (2009)CrossRefGoogle Scholar
  5. 5.
    Marin, C., Fernandez, E.: Biocompatibility of intracortical microelectrodes: current status and future prospects. Front Neuroengineering 3, 8 (2010)CrossRefGoogle Scholar
  6. 6.
    Cogan, S.F., Troyk, P.R., Ehrlich, J., Gasbarro, C.M., Plante, T.D.: The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes. J. Neural Eng. 4(2), 79–86 (2007)CrossRefGoogle Scholar
  7. 7.
    Hascup, E.R., af Bjerken, S., Hascup, K.N., Pomerleau, F., Huettl, P., Stromberg, I., Gerhardt, G.A.: Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res. 1291, 12–20 (2009)CrossRefGoogle Scholar
  8. 8.
    McCreery, D.B., Yuen, T.G., Agnew, W.F., Bullara, L.A.: Stimulus parameters affecting tissue injury during microstimulation in the cochlear nucleus of the cat. Hear Res. 77(1-2), 105–115 (1994)CrossRefGoogle Scholar
  9. 9.
    Matthew, G., Burrone, J.: Activity-dependant relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465 (2010)Google Scholar
  10. 10.
    Goold, C.P., Nicoll, R.A.: Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 68(3), 512–528 (2010)CrossRefGoogle Scholar
  11. 11.
    Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8(9), 1263–1268 (2005)CrossRefGoogle Scholar
  12. 12.
    Grossman, N., Poher, V., Grubb, M.S., Kennedy, G.T., Nikolic, K., McGovern, B., Berlinguer Palmini, R., Gong, Z., Drakakis, E.M., Neil, M.A., Dawson, M.D., Burrone, J., Degenaar, P.: Multi-site optical excitation using ChR2 and micro-LED array. J. Neural Eng. 7(1), 16004 (2010)CrossRefGoogle Scholar
  13. 13.
    Ranganathan, R., Harris, W.A., Zuker, C.S.: The Molecular Genetics of Invertebrate Phototransduction. Trends in Neuroscience 14, 486–493 (1991)CrossRefGoogle Scholar
  14. 14.
    Zemelman, B.V., Lee, G.A., Ng, M., Miesenbock, G.: Selective Photostimulation of Genetically ChARGed Neurons. Neuron 33, 15–22 (2002)CrossRefGoogle Scholar
  15. 15.
    Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A.M., Bamberg, E., Hegemann, P.: Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae. Science 296, 2395–2398 (2002)CrossRefGoogle Scholar
  16. 16.
    Suzuki, T., Yamasaki, K., Fujita, S., Oda, K., Iseki, M., Yoshida, K., Watanabe, M., Daiyasu, H., Toh, H., Asamizu, E., Tabata, S., Miura, K., Fukuzawa, H., Nakamura, S., Takahashia, T.: Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochemical and Biophysical Research Communications 301, 711–717 (2003)CrossRefGoogle Scholar
  17. 17.
    Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E.: Channelrhodopsin-2, a directly light-gatedcation-selective membrane channel. PNAS 100(24), 13940–13944 (2003)CrossRefGoogle Scholar
  18. 18.
    Ishizuka, T., Kakuda, M., Araki, R., Yawo, H.: Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54(2), 85–94 (2006)CrossRefGoogle Scholar
  19. 19.
    Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E., Fiala, A.: Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae. Current Biology 16, 1741–1747 (2006)CrossRefGoogle Scholar
  20. 20.
    Nagel, G., Brauner, M., Liewald, J.F., Adeishvili, N., Bamberg, E., Gottschalk, A.: Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. Current Biology 15, 2279–2284 (2005)CrossRefGoogle Scholar
  21. 21.
    Bi, A., Cui, J., Ma, Y.-P., Olshevskaya, E., Pu, M., Dizhoor, A.M., Pan, Z.-H.: Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron 50, 23–33 (2006)CrossRefGoogle Scholar
  22. 22.
    Aravanis, A.M., Wang, L.-P., Zhang, F., Meltzer, L.A., Mogri, M.: An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, 143–156 (2007)CrossRefGoogle Scholar
  23. 23.
    Hägglund, M., Borgius, L., Dougherty, K.J., Kiehn, O.: Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nature neuroscience 13(2) (2010)Google Scholar
  24. 24.
    Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., Wang, D., Zhang, F., Boyden, E., Deisseroth, K., Kasai, H., Hall, W.C., Feng, G., Augustine, G.J.: High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 104(19), 8143–8148 (2007)CrossRefGoogle Scholar
  25. 25.
    Godley, B.F., Shamsi, F.A., Liang, F.Q., Jarrett, S.G., Davies, S., Boulton, M.: Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J. Biol. Chem. 280(22), 21061–21066 (2005)CrossRefGoogle Scholar
  26. 26.
    Diester, I., Kaufman, M.T., Mogri, M., Pashaie, R., Goo, W., Yizhar, O., Ramakrishnan, C., Deisseroth, K., Shenoy, K.V.: An optogenetic toolbox designed for primates. Nature Neuroscience 14(3), 387–397 (2011)CrossRefGoogle Scholar
  27. 27.
    Gunaydin, L.A., Yizhar, O., Berndt, A., Sohal, V.S., Deisseroth, K., Hegemann, P.: Ultrafast optogenetic control. Nat. Neurosci. 13(3), 387–392 (2010)CrossRefGoogle Scholar
  28. 28.
    Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P., Deisseroth, K.: Bi-stable neural state switches. Nature Neuroscience 12(2) (February 2009)Google Scholar
  29. 29.
    Llewellyn, M.E., Thompson, K.R., Deisseroth, K., Delp, S.L.: Orderly recruitment of motor units under optical control in vivo. Nature Medicine 16(10) (October 2010)Google Scholar
  30. 30.
    Zhang, F., Wang, L.-P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., Bamberg, E.: Multimodal fast optical interrogation of neural circuitry. Nature 446 (April 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • L. Humphreys
    • 1
    • 3
  • J. M. Ferrández
    • 1
    • 2
  • E. Fernández
    • 1
    • 3
  1. 1.Instituto de BioingenieríaUniversidad Miguel HernándezAlicante
  2. 2.Dpto. Electrónica, Tecnología de ComputadorasUniv. Politécnica de CartagenaSpain
  3. 3.CIBER-BBNSpain

Personalised recommendations