Advertisement

Improving Area Center Robot Navigation Using a Novel Range Scan Segmentation Method

  • José Manuel Cuadra Troncoso
  • José Ramón Álvarez-Sánchez
  • Félix de la Paz López
  • Antonio Fernández-Caballero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)

Abstract

When using raw 2D range measures to delimit the border for the free area sensed by a robot, the noise makes the sensor to yield a cloud of points, which is an imprecise border. This vagueness pose some problems for robot navigation using area center methods, due to free area split points locations. The basic method, when locating split points, does not take into account environmental features, only the raw cloud of points. In order to determine accurately such environmental features we use a novel range scan segmentation method. This method has the interesting characteristic of being adaptive to environment noise, in the sense that we do not need to fix noise standard deviation, even different areas of the same scan can have different deviations, e. g. a wall besides a hedge. Procedure execution time is in the order of milliseconds for modern processors. Information about interesting navigational features is used to improve area center navigation by means of determining safer split points and developing the idea of dynamic split point. A dynamic split point change its position to a new feature if this new feature is considered more dangerous than the one marked by the split point.

Keywords

Extend Kalman Filter Outlier Detection Robot Navigation Split Point Line Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez Sánchez, J.R., Mira Mira, J., de la Paz López, F., Cuadra Troncoso, J.M.: The centre of area method as a basic mechanism for representation and navigation. Robotics and Autonomous Systems 55(12), 860–869 (2007)CrossRefGoogle Scholar
  2. 2.
    Álvarez-Sánchez, J.R., de la Paz Lépez, F., Troncoso, J.M.C., Sánchez, J.I.R.: Partial center of area method used for reactive autonomous robot navigation. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5602, pp. 408–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Borges, G.A.: A split-and-merge segmentation algorithm for line extraction in 2-d range images. In: Proceedings of the International Conference on Pattern Recognition, Washington, DC, USA, vol. 1, p. 1441. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  4. 4.
    Borges, G.A., Aldon, M.-J.: Line extraction in 2d range images for mobile robotics. J. Intell. Robotics Syst. 40, 267–297 (2004)CrossRefGoogle Scholar
  5. 5.
    Castellanos, J.A., Tardós, J.D. (eds.): Laser-based segmentation and localization for a mobile robot Robotics and manufacturing: Recent trends in research and applications, vol. 6. ASME Press, New York (1996)Google Scholar
  6. 6.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Johnston, J., DiNardo’s, J.: Econometric Methods, 4th edn. McGraw-Hill, Irwin (1996)Google Scholar
  8. 8.
    Lindeberg, T.: Scale-space for Discrete Signals. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 234–254 (1990)CrossRefGoogle Scholar
  9. 9.
    Nguyen, V., Gächter, S., Martinelli, A., Tomatis, N., Siegwart, R.: A Comparison of line Extraction Algorithms using 2d Range Data for Indoor Mobile Robotics. Auton. Robots 23, 97–111 (2007)CrossRefGoogle Scholar
  10. 10.
    Peña, D.: On internal robustification of Plackett-Kalman algorithm for recursive estimation of regression linear models. Trabajos de Estadística y de Investigación Operativa 36(1), 93–106 (1985) (in spanish)CrossRefzbMATHGoogle Scholar
  11. 11.
    Plackett, R.L.: Some theorems in least squares. Biometrika 37(1-2), 149–157 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rosin, P.L.: Determining local natural scales of curves. Pattern Recognition Lett. 19, 63–75 (1994)CrossRefzbMATHGoogle Scholar
  13. 13.
    Álvarez Sánchez, J.R., de la Paz López, F., Cuadra Troncoso, J.M., de Santos Sierra, D.: Reactive navigation in real environments using partial center of area method. Robotics and Autonomous Systems 58(12), 1231–1237 (2010)CrossRefGoogle Scholar
  14. 14.
    Siadat, A., Kaske, A., Klausmann, S., Dufaut, M., Husson, R.: An optimized segmentation method for a 2d laser-scanner applied to mobile robot navigation. In: Proceedings of the 3rd IFAC symposium on intelligent components and instruments for control applications (1997)Google Scholar
  15. 15.
    Siegel, A.F.: Robust regression using repeated medians. Biometrika 69(1), 242–244 (1982)CrossRefzbMATHGoogle Scholar
  16. 16.
    Taylor, R.M., Probert, P.J.: Range finding and feature extraction by segmentation of images for mobile robot navigation. In: Proceedings of IEEE International Conference on Robotics and Automation, april 1996, vol. 1, pp. 95–100 (1996)Google Scholar
  17. 17.
    Witkin, A.: Scale-space filtering: A new approach to multi-scale description. In: IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 1884, vol. 9, pp. 150–153 (1984)Google Scholar
  18. 18.
    Zhang, S., Xie, L., Adams, M.D.: Feature extraction for outdoor mobile robot navigation based on a modified gauss-newton optimization approach. Robotics and Autonomous Systems 54(4), 277–287 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • José Manuel Cuadra Troncoso
    • 1
  • José Ramón Álvarez-Sánchez
    • 1
  • Félix de la Paz López
    • 1
  • Antonio Fernández-Caballero
    • 2
  1. 1.Dpto. de Inteligencia ArtificialUNEDMadridSpain
  2. 2.Departamento de Sistemas InformáticosUCLMAlbaceteSpain

Personalised recommendations