Selective Method Based on Auctions for Map Inspection by Robotic Teams

  • Manuel Martín-Ortiz
  • Juan Pereda
  • Javier de Lope
  • Féliz de la Paz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)


In the inspection of a known environment by a team of robots, communication problems may exists between members of the team, even, due to the hostile environment these members can be damaged. In this paper, a redundant, robust and fault tolerant method to cover a known environment using a multi-agent system and where the communications are not guaranteed is presented. Through a simple auction system for cooperation and coordination, the aim of this method is to provide an effective way to solve communication or hardware failures problems in the inspection task of a known environment. We have conducted several experiments in order to verify and validate the proposed approach. The results are commented and compared to other methods.


Multiagent System Unmanned Aerial Vehicle Central Server Humanoid Robot Random Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I., Sun, Z., Vuran, M.C.: Signal propagation techniques for wireless underground communication networks. Physical Communication 2(3), 167–183 (2009)CrossRefGoogle Scholar
  2. 2.
    Breazeal, C.: Emotion and sociable humanoid robots. International Journal of Human-Computer Studies 59(1-2), 119–155 (2003)CrossRefGoogle Scholar
  3. 3.
    Burdakov, O., Doherty, P., Holmberg, K., Kvarnström, J., Olsson, P.M.: Positioning unmanned aerial vehicles as communication relays for surveillance tasks. In: Proceedings of the 5th Robotics: Science and Systems Conference (RSS), Seattle, WA. Citeseer (2009)Google Scholar
  4. 4.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE Transactions on Robotics 21(3), 376–386 (2005)CrossRefGoogle Scholar
  5. 5.
    Chehri, A., Fortier, P., Tardif, P.: Application of Ad-hoc sensor networks for localization in underground mines. In: IEEE Annual Wireless and Microwave Technology Conference, WAMICON 2006, pp. 1–4. IEEE, Los Alamitos (2007)Google Scholar
  6. 6.
    Dasgupta, P.: A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 38(3), 549–563 (2008)CrossRefGoogle Scholar
  7. 7.
    Duro, R.J., Graña, M., Lope, D.: On the potential contributions of hybrid intelligent approaches to multicomponent robotic system development. Information Sciences 180(14), 2635–2648 (2010)CrossRefGoogle Scholar
  8. 8.
    Emery, R., Sikorski, K., Balch, T.: Protocols for collaboration, coordination and dynamic role assignment in a robot team. In: Proceedings of IEEE International Conference on Robotics and Automation ICRA 2002, vol. 3, pp. 3008–3015. IEEE, Los Alamitos (2002)Google Scholar
  9. 9.
    Kawaguchi, Y., Yoshida, I., Kurumatani, H., Kikuta, T., Yamada, Y.: Internal pipe inspection robot. In: Proceedings of IEEE International Conference on Robotics and Automation, 1995, vol. 1, pp. 857–862. IEEE, Los Alamitos (2002)CrossRefGoogle Scholar
  10. 10.
    Kurnaz, S., Cetin, O., Kaynak, O.: Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles. Journal of Intelligent and Robotic Systems 54(1), 229–244 (2009)CrossRefGoogle Scholar
  11. 11.
    Maio, D., Rizzi, S.: A multi-agent approach to environment exploration. IEEE Transactions on Pattern Analysis Machine Intelligence 18(11) (1996)Google Scholar
  12. 12.
    Mathis, P.: Graphs and Networks: Multilevel Modeling (Geographical Information Systems Series) (2007)Google Scholar
  13. 13.
    Osuka, K., Kitajima, H.: Development of mobile inspection robot for rescue activities: MOIRA. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2003, vol. 4, pp. 3373–3377. IEEE, Los Alamitos (2003)Google Scholar
  14. 14.
    Robins, B., Dautenhahn, K., Boekhorst, R., Billard, A.: Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society 4(2), 105–120 (2005)CrossRefGoogle Scholar
  15. 15.
    Rome, E., Hertzberg, J., Kirchner, F., Licht, U., Christaller, T.: Towards autonomous sewer robots: the MAKRO project. Urban Water 1(1), 57–70 (1999)CrossRefGoogle Scholar
  16. 16.
    Shoham, Y., Leyton-Brown, K.: Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Silva, A., Vuran, M.: Empirical evaluation of wireless underground-to-underground communication in wireless underground sensor networks. Distributed Computing in Sensor Systems, 231–244 (2009)Google Scholar
  18. 18.
    Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, D., Morris, A., Omohundro, Z., et al.: Autonomous exploration and mapping of abandoned mines. Robotics & Automation Magazine 11(4), 79–91 (2005)CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Yan, G.: In-pipe inspection robot with active pipe-diameter adaptability and automatic tractive force adjusting. Mechanism and Machine Theory 42(12), 1618–1631 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuel Martín-Ortiz
    • 1
  • Juan Pereda
    • 1
  • Javier de Lope
    • 2
  • Féliz de la Paz
    • 3
  1. 1.ITRB Labs, Research, Technology Development and Innovation, S.LSpain
  2. 2.Computational Cognitive RoboticsUniversidad Politécnica de MadridSpain
  3. 3.Dept. Artificial IntelligenceUNEDSpain

Personalised recommendations